Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5/x = 1/8 - y/4 = (1-2y)/8
<=> x = 5*8/(1-2y) ; thấy 1-2y là số lẻ nên UCLN(8,1-2y) = 1
do đó x/8 = 5/(1-2y) (*)
x, y nguyên khi 1-2y phải là ước của 5
* 1-2y = -1 => y = 1 => x = -40
* 1-2y = 1 => y = 0 => x = 40
* 1-2y = -5 => y = 3 => x = -8
* 1-2y = 5 => y = -2 => x = 8
vậy có 4 cặp (x,y) nguyên (-40,1) ; (40, 0) ; (-8, -5) ; (8, 5)
CHÚC BẠN HỌC TỐT
\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(\frac{20+xy}{4x}=\frac{1}{8}\)
8( 20 + xy ) = 4x
2( 20 + xy ) = x
40 + 2xy = x
40 = x - 2xy
-40 = 2xy - x
2xy - x = -40
x( 2y - 1 ) = -40
Ta thấy 2y - 1 là ước lẻ của 40. Ta có:
2y-1 | -5 | -1 | 1 | 5 |
x | 8 | 40 | -40 | -8 |
y | -2 | 0 | 1 | 3 |
x | 8 | 40 | -40 | -8 |
Ta có các cặp số ( x;y ) là: ( 8;-2 ) ; ( 40;0 ) ; ( -40;1 ) ; ( -8;3 ).
\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}=>\frac{5}{x}=\frac{1}{8}-\frac{y}{4}=\frac{1}{8}-\frac{2y}{8}=\frac{1-2y}{8}\)
=>x.(1-2y)=5.8=40
Vì 2y là số chẵn => 1-2y là số lẻ hay 1-2y là ước lẻ của 40
=>1-2y \(\in\) {1;-1;5;-5}=>2y \(\in\) {0;2;-4;6}=>y \(\in\) {0;1;-2;3}
=>x \(\in\) {40;-40;8;-8}
Vậy ..................
Theo đề bài suy ra \(\frac{5}{x}=\frac{1}{8}-\frac{y}{4}=\frac{1-2y}{8}\)
\(\Leftrightarrow x=\frac{8}{1-2y}.5\)
Dễ thấy 1-2y là số lẻ nên ƯCLN(8;1-2y) = 1 \(\Rightarrow\frac{x}{8}=\frac{5}{1-2y}\)
; mà x, y nguyên khi 1-2y phải là ước của 5 <=> 1 - 2y \(\in\) {-1; 1; -5; 5}
- Xét 1-2y = -1 => y = 1 => x = -40
- Xét 1-2y = 1 => y = 0 => x = 40
- Xét 1-2y = -5 => y = 3 => x = -8
- Xét 1-2y = 5 => y = -2 => x = 8
Vậy có 4 cặp (x,y) nguyên (-40;1) ; (40;0) ; (-8;-5) ; (8;5)
\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\Rightarrow\frac{5}{x}=\frac{1}{8}-\frac{y}{4}\Rightarrow\frac{5}{x}=\frac{1}{8}-\frac{2y}{8}=\frac{1-2y}{8}\)
=>x(1-2y)=5.8=40
do 1-2y là 1 số lẻ và là ước lẻ của 40
nên 1-2y ={-1;1;-5;5}
+)1-2y=-1 =>y=1
=>x=-40
+1-2y=1=>y=0
=>x=40
+)1-2y=-5 =>y=3
=>x=-8
+)1-2y=5=>y=-2
=>x=8
Vậy có 4 cặp (x;y) thỏa mãn bài toán là:...
^...^ ^_^
Ta có:
\(\frac{5}{x}=\frac{1}{8}-\frac{y}{4}=\frac{1}{8}-\frac{2y}{8}=\frac{1-2y}{8}\)
\(\Rightarrow x\left(1-2y\right)=40\Rightarrow1-2y\) là ước lẻ của 40
Đáp số:
x | 40 | -40 | 8 | -8 |
y | 0 | 1 | -2 | 3 |
\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
<=> \(\frac{20+xy}{4x}=\frac{1}{8}\)
<=> 8(20 + xy) = 4x
<=> 2(20 + xy) = x
<=> 40 + 2xy = x
<=> x(1 - 2y) = 40
Lập bảng xét các trường hợp
x | 1 | 40 | 2 | 20 | 5 | 8 | 10 | 4 | -10 | -4 | -5 | -8 | -2 | -20 | -1 | -40 |
1 - 2y | 40 | 1 | 20 | 2 | 8 | 5 | 4 | 10 | -4 | -10 | -8 | -5 | -20 | -2 | -40 | -1 |
y | -39/2 (loại) | 0 | -19/2(loại) | -1/2(loại) | -7/2 (loại) | -2 | -3/2 (loại) | -9/2(loại) | 5/2(loại) | 11/2(loại) | 9/2(loại) | 3 | 21/2(loại) | 3/2(loại) | 41/2(loại) | 1 |
Vậy các cặp (x;y) tìm được là (40;0) ; (8;-2) ; (-8 ; 3) ; (-40 ; 1)
\(a,\frac{x}{8}-\frac{1}{y}=\frac{1}{4}\)
\(\Rightarrow\frac{1}{y}=\frac{x}{8}-\frac{1}{4}\)
\(\Rightarrow\frac{1}{y}=\frac{x-2}{8}\)
\(\Rightarrow\left(x-2\right)\cdot y=1\cdot8\)
\(\Rightarrow y\left(x-2\right)=8\)
xét bảng :
x-2 | -1 | 1 | -2 | 2 | -4 | 4 | -8 | 8 |
y | -8 | 8 | -4 | 4 | -2 | 2 | -1 | 1 |
x | 1 | 3 | 0 | 4 | -2 | 6 | -6 | 10 |
vậy_
b, tương tự
\(a,\frac{x}{8}-\frac{1}{y}=\frac{1}{4}\)
\(\Leftrightarrow\frac{1}{y}=\frac{x}{8}-\frac{1}{4}\)
\(\Leftrightarrow\frac{1}{y}=\frac{x}{8}-\frac{2}{8}\)
\(\Leftrightarrow\frac{1}{y}=\frac{x-2}{8}\)
\(\Leftrightarrow y(x-2)=8\)
Vì \(x,y\inℤ\)nên \(x-2\inℤ\), ta có bảng sau:
y | 1 | -1 | 2 | -2 | 4 | -4 | 8 | -8 |
x - 2 | -8 | 8 | -4 | 4 | -2 | 2 | -1 | 1 |
x | -6 | 10 | -2 | 6 | 0 | 4 | 1 | 3 |
Ta có :
\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(\frac{5}{x}=\frac{1}{8}-\frac{y}{4}\)
\(\frac{5}{x}=\frac{1}{8}-\frac{2y}{8}\)
\(\frac{5}{x}=\frac{1-2y}{8}\)
\(\Rightarrow5.8=\left(1-2y\right).x\)
\(\Rightarrow40=\left(1-2y\right).x\)
Ta thấy 1 - 2y là ước lẻ của 40 nên x là ước chẵn của 40
Lập bảng ta có :
x | 40 | -40 | 8 | -8 |
1-2y | 1 | -1 | 5 | -5 |
y | 0 | 1 | -2 | 3 |
Vậy ...
\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
=> \(\frac{20+xy}{4y}=\frac{1}{8}\)
=> (20 + xy).8 = 4y
=> (20 + xy).2 = y
=> 40 + 2xy = y
=> y - 2xy = 40
=> y.(1 - 2x) = 40
Mà 1 - 2x là số lẻ => \(1-2x\in\left\{1;-1;5;-5\right\}\)
Ta có bảng sau:
Vậy các cặp giá trị (x;y) thỏa mãn đề bài là: (0;40) ; (1;-40) ; (-2;8) ; (3;-8)
x=8
y=(-2)
mk nghĩ vậy