K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2019

#)Giải : 

\(x^3-3x^2+x+2\)

\(=x^3-2x^2-x^2+2x-x+2\)

\(=x^2\left(x-2\right)-x\left(x-2\right)-\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2-x-1\right)\)

Để \(x^3-3x^2+x+2\) là số chính phương \(\Leftrightarrow x-2=x^2-x-1\)

\(\Leftrightarrow x^2-2x+1=0\Leftrightarrow x=1\)

13 tháng 6 2020

TRẢ LỜI HỘ MK VS MK CÂN GẤP -_-

25 tháng 4 2024

đã 4 năm trôi qua và ... tui ko bt

 

9 tháng 11 2017

Bài này trong câu hỏi tương tự

16 tháng 7 2018

mình ko biết làm

24 tháng 8 2019

giúp mình làm bài này với:tìm x

a,x+4=2mu0+1mu2019

b,1+1/3+1/6+1/10+....+1/x nhan (x+1):2

SO SÁNH

A=2011mu2010+1/2011mu2011+1 và B=2011mu2011+1/2011mu2012+1

31 tháng 1 2021

Xét n=0n=0 không thỏa mãn.

Xét n1n≥1

Với nNn∈N thì:A=n4+2n3+2n2+n+7=(n2+n)2+n2+n+7>(n2+n)2A=n4+2n3+2n2+n+7=(n2+n)2+n2+n+7>(n2+n)2

Mặt khác, xét :

A(n2+n+2)2=3n23n+3<0A−(n2+n+2)2=−3n2−3n+3<0 với mọi n1n≥1

A<(n2+n+2)2⇔A<(n2+n+2)2

Như vậy (n2+n)2<A<(n2+n+2)2(n2+n)2<A<(n2+n+2)2, suy ra để $A$ là số chính phương thì

A=(n2+n+1)2n4+2n3+2n2+n+7=(n2+n+1)2A=(n2+n+1)2⇔n4+2n3+2n2+n+7=(n2+n+1)2

n2n+6=0(n2)(n+3)=0⇔−n2−n+6=0⇔(n−2)(n+3)=0

Suy ra n=2