K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2023

Xét \(x=0\Rightarrow y=0\)\(x=1\Rightarrow y^3=2\), vô lí. \(x=2\Rightarrow y=2\).

Với \(x\ge3\), ta viết lại pt đã cho như sau:

\(y^3=3^x-1\)

Ta thấy \(y\equiv2\left[3\right]\) \(\Rightarrow y=3z-1\left(z\inℕ^∗\right)\)

\(\Rightarrow\left(3z-1\right)^3=3^x-1\) 

\(\Leftrightarrow27z^3-27z^2+9z-1=3^x-1\)

\(\Leftrightarrow27z^3-27z^2+9z=3^x\)

\(\Leftrightarrow9z^3-9z^2+z=3^{x-2}\) 

\(\Leftrightarrow z\left(9z^2-9z+1\right)=3^{x-2}\)

Do \(9z^2-9z+1⋮̸3\)  nên \(\left\{{}\begin{matrix}z=3^{x-2}\\9z^2-9z+1=1\end{matrix}\right.\), vô lí do \(z\inℕ^∗\)

Vậy với \(x\ge3\) thì pt đã cho không có nghiệm nguyên.

Do đó pt đã cho có cặp nghiệm nguyên \(\left(x,y\right)\in\left\{\left(0;0\right);\left(2;2\right)\right\}\)

 

9 tháng 8 2023

- Nếu x < 0 => y không nguyên

- Nếu x = 0 => y = 0

- Nếu x = 1 => y không nguyên 

- Nếu x = 2 => y = 2 

- Nếu x > 2 pt => 3= y3 + 1 ( Vì x > 2 => y3 > 9 ) 

Ta suy ra �3+1⋮9⇒�3÷9y3+19y3÷9dư 1 

⇒�=9�+2y=9k+2hoặc  �=9�+5y=9k+5hoặc  �=9�+8y=9k+8( k là số nguyên dương ) (1) 

Mặt khác, ta cũng có �3+1⋮3y3+13

⇒�=3�+2y=3m+2( m nguyên dương ) (2)

Từ (1) và (2) => vô nghiệm ( Vì từ (2) ⇒�=9�+6y=9n+6không thỏa (1) )

Vậy phương trình có 2 cặp nghiệm nguyên không âm là ( 0;0 ) và ( 2;2 )

25 tháng 4 2015

Tu de bai suy ra 2y+2x=xy<=>...<=>y(2-x)= -2x<=>y=2x/(x-2)<=>y=(2x-4+4)/(x-2)<=>y=2+4/(x-2)

vi x la so nguyen Dưỡng nen x-2 la so nguyen  duong va la ước cua 4 => x-2 =1 hoặc x-2= 4 => x=3 hoac x=6 

Voi x=3 => y= 6

voi x=6=> y=3

vay cac cap so nguyen duong (x;y) can tim la (3;6); (6;3)

26 tháng 4 2015

.....

Sau khi chi ra x-2 la uoc nguyen duong cua 4

 Co 3  Truong hop

x-2 =1; x-2=2;x-2=4

Tu do tinh duoc x=3;x=4;x=6. Suy ra cac gia tri tuong ung cua y

co 3 cap so nguyen duong x, y can Tim:(3;6);(4 ;4);(6;3)

7 tháng 10 2018

Phương trình cho \(\Leftrightarrow x^3-2x^2+3x-y^3-1=0\)(1)

\(\Leftrightarrow y^3=x^3-2x^2+3x-1\)(2)

Ta có: \(\left(x-1\right)^3=x^3-3x^2+3x-1\le x^3-2x^2+3x-1=y^3\)(Do \(3x^2\ge2x^2\ge0\))

Lại có: \(\left(x+1\right)^3=x^3+3x^2+3x+1=\left(x^3-2x^2+3x-1\right)+5x^2+2>y^3\)

Do đó: \(\left(x-1\right)^3\le y^3< \left(x+1\right)^3\Rightarrow x-1\le y< x+1\)

Mà y thuộc Z nên \(\orbr{\begin{cases}y=x\\y=x-1\end{cases}}\)

+) Với y=x, thay vào (1) ta được: \(-2x^2+3x-1=0\Leftrightarrow2x^2-3x+1=0\)

\(\Leftrightarrow2x^2-2x-x+1=0\Leftrightarrow2x\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{2}\left(l\right)\end{cases}}\)\(\Rightarrow x=y=1\)

+) Với y = x-1; thay vào (2), ta được:

\(x^3-2x^2+3x-1=\left(x-1\right)^3\Leftrightarrow x^2=0\Rightarrow x=0\)\(\Rightarrow y=-1\)

Vậy các cặp nghiệm nguyên t/m pt cho là \(\left(x;y\right)\in\left\{\left(1;1\right);\left(0;-1\right)\right\}.\)

7 tháng 10 2018

hhcjggcjjdhdkfjfghn

fcfdcfgfvg

3 tháng 6 2020

\(3^x=\left(y+1\right)^2-1=\left(y+2\right).y\Rightarrow y+2=3^q;y=3^p\left(p+q=x;p< q\right)\)

\(\text{mà:}UCLN\left(y+2;y\right)\le2< 3\text{ do đó:}y=1\Leftrightarrow x=1\left(\text{thỏa mãn}\right)\)

29 tháng 8 2018

Link cả đề này:
https://123doc.org/document/3383667-de-thi-hoc-sinh-gioi-mon-toan-9-thanh-pho-hai-duong-nam-hoc-2015-2016-co-dap-an.htm

25 tháng 2 2018

\(PT\Leftrightarrow x^4+y^3-xy^3-1=0\)

\(\Leftrightarrow\left(x^4-1\right)+\left(y^3-xy^3\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2+x+1\right)-y^3\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2+x+1-y^3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x^3+x^2+x+1=y^3\end{cases}}\)

TH1 : \(x=1\Rightarrow y\in Z\)

TH2 : \(x^3+x^2+x+1=y^3\)

Ta có : \(x^3< x^3+x^2+x+1< x^3+3x^2+3x+1\)

\(\Leftrightarrow x^3< x^3+x^2+x+1< \left(x+1\right)^3\)

\(\Rightarrow x^3+x^2+x+1\notin Z\) hay \(y\notin Z\) (loại)

Vậy \(x=1\) và \(y\in Z\)

3 tháng 10 2021

số học à khó vậy :(( 

3 tháng 10 2021

x y z là các số ngto hay x+y+z là số ngto

22 tháng 10 2019

Nếu y=0x25x+6=0x2;3y=0⇒x2−5x+6=0⇒x∈2;3

-Nếu y=1x25x+4=0x1;4y=1⇒x2−5x+4=0⇒x∈1;4

-Nếu y>1y>1

 3y=(x2)(x3)+1x1(mod3)x=3k+1(kN)3y=(x−2)(x−3)+1⇒x≡1(mod3)⇒x=3k+1(k∈N)

 Thay vào đầu bài ta có 9k29k+3=3y3k23k+1=3y19k2−9k+3=3y⇒3k2−3k+1=3y−1

 Nhận thấy 3y13,3k23k+11(mod3)3y−1⋮3,3k2−3k+1≡1(mod3)⇒ (loại)

Vậy pt có 4 nghiệm nguyên

1 tháng 5 2020

Gắt thế,IMO 2003

Đặt \(S=\frac{x^2}{2xy^2-y^3+1}\)

Xét \(b=1\Rightarrow S=\frac{x^2}{2x}=\frac{x}{2}\Rightarrow x=2k\) thỏa mãn 

Xét \(b>1\) Đặt \(\frac{x^2}{2xy^2-y^3+1}=u\)

\(\Rightarrow x^2-2y^2ux+\left(y^3-1\right)u=0\)

Xét \(\Delta=\left(2y^2u\right)^2-4\left(b^3-1\right)u\) phải là số chính phương

Ta dễ dàng chứng minh được \(\left(2y^2u-y-1\right)^2< \Delta< \left(2y^2u-y+1\right)^2\)

\(\Rightarrow\Delta=\left(2y^2u-y\right)^2\Rightarrow y^2=4u\)

Đặt \(y=2t\Rightarrow x=t\left(h\right)x=8t^4-t\)

Vậy.........................