Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do vai trò bình đẳng của x, y, z trong phương trình,
trước hết ta xét x ≤ y ≤ z.
Vì x, y, z nguyên dương nên xyz ≠ 0, do x ≤ y ≤ z
=> xyz = x + y + z ≤ 3z => xy ≤ 3=> xy thuộc {1 ; 2 ; 3}.
Nếu xy = 1 => x = y = 1,
thay vào (2) ta có : 2 + z = z, vô lí.
Nếu xy = 2, do x ≤ y nên x = 1 và y = 2,
thay vào (2), => z = 3.Nếu xy = 3,
do x ≤ y nên x = 1 và y = 3,
thay vào (2), => z = 2.
Vậy nghiệm nguyên dương của phương trình (2) là các hoán vị của (1 ; 2 ; 3)
+) Vì y và x tỉ lệ thuận với nhau nên:
y=kxy=kx
\Rightarrow y_1=k\cdot x_1⇒y1=k⋅x1
hay 6=k\cdot36=k⋅3
\Rightarrow k=2⇒k=2
Vậy y tỉ lệ thuận với x theo hệ số tỉ lệ 2.
ta có : \(2^{33}\equiv8\)(mod31)
\(\left(2^{33}\right)^{11}=2^{363}\equiv8\)(mod31)
\(\left(2^{363}\right)^5=2^{1815}\equiv1\)(mod31)
\(\left(2^{33}\right)^6\equiv2^{198}\equiv8\)(mod31)
=> \(2^{1815}.2^{198}:2^2=2^{2011}\equiv1.8:4\equiv2\)(mod31)
vậy số dư pháp chia trên là 2