Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) 2|x - 3| - 5 = 3 <=> 2|x - 3| = 8 <=> |x - 3| = 4 => x - 3 = ± 4
TH1 : x - 3 = 4 => x = 7
TH2 : x - 3 = - 4 => x = - 1
Vậy x = { - 1; 7 }
b ) 2|2x + 3| + |2x + 3| = 6 <=> 3|2x + 3| = 6 => |2x + 3| = 2 => 2x + 3 = ± 2
=> x = { - 5/2 ; - 1/2 }
c ) 3|x + 1|2 + |x + 1|2 = 16
4|x + 1|2 = 16
=> |x + 1|2 = 4 = 22 ( ko xét TH |x + 1| = - 2 vì |x + 1| ≥ 0 )
=> |x + 1| = 2 => x + 1 = ± 2 => x = { - 3; 1 }
a) \(\left|\left|x-1\right|-1\right|=2\Rightarrow\orbr{\begin{cases}\left|x-1\right|-1=2\\\left|x-1\right|-1=-2\end{cases}}\Rightarrow\orbr{\begin{cases}\left|x-1\right|=3\\\left|x-1\right|=-1\left(l\right)\end{cases}}\)
TH1: x - 1 = 3
x = 4
TH2: x - 1 = - 3
x = - 2
b) Tương tự câu a.
c) \(\left|\left|2x-3\right|-x+1\right|=42-8\)
\(\left|\left|2x-3\right|-x+1\right|=34\)
TH1: \(\left|2x-3\right|-x+1=34\)
\(\left|2x-3\right|-x=33\)
Với \(x\ge\frac{3}{2}\), ta có \(2x-3-x=33\Rightarrow x=36\) (tm)
Với \(x< \frac{3}{2}\), ta có \(3-2x-x+1=34\Rightarrow-3x=30\Rightarrow x=-10\left(tm\right)\)
TH2: \(\left|2x-3\right|-x+1=-34\)
\(\left|2x-3\right|-x=-35\)
Với \(x\ge\frac{3}{2}\), ta có \(2x-3-x=-35\Rightarrow x=-32\) (l)
Với \(x< \frac{3}{2}\), ta có \(3-2x-x+1=-34\Rightarrow-3x=38\Rightarrow x=\frac{38}{3}\left(l\right)\)
d) Tương tự câu c.
|x-1|+|y-2|+|z-3|=0
|x-1|+|y-2|+|z-3|=0
Vì\(\left|x-1\right|\ge0;\left|y-2\right|\ge0;\left|z-3\right|=0\) nên |x-1|+|y-2|+|z-3| \(\ge0\)nên để biểu thức =0
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y-2=0\\z-3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}}\)
nhận xét ta thấy
/x-1/ >=0
/y-2/>=0
/z-3/>=0
vậy /x-1/+/y-2/+/z-3/ >=0
dấu bằng xảy ra khi và chỉ khi
x-1=0
y-2=0
z-3=0
=> x=1, y=2, z=3
ta có:
\(\left|x-1\right|+\left|x-2\right|+\left|y-3\right|+\left|x-4\right|\)
\(=\left|x-1\right|+\left|x-2\right|+\left|y-3\right|+\left|4-x\right|\)
\(\ge\left|x-1+4-x\right|+\left|x-2\right|+\left|y-3\right|\)
\(=3+\left|x-2\right|+\left|y-3\right|\)
\(\ge3\)
Dấu "=" xả ra khi \(\hept{\begin{cases}\left(x-1\right)\left(4-x\right)\ge0\\\left|x-2\right|=0\\\left|y-3\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}1\le x\le4\cdot\\x=2\left(TM\cdot\right)\\y=3\end{cases}}\)
Vậy \(x=2;y=3\)
(x-1) + (x-2) + (x-3) + (x-4) = 3
(x+x+x+x) - (1+2+3+4) = 3
X x 4 - 10 = 3
X x 4 = 3 + 10
X x 4 = 13
x = 13 : 4
x = \(\frac{13}{4}\)