K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2020

\(A=\frac{1}{a}\)\(+\frac{1}{a}\)\(+\frac{1}{a}\)\(+\frac{1}{a}\)\(+\frac{1}{ab}\)\(\ge\frac{25}{4a+ab}\)\(=\frac{25}{a\left(b+4\right)}\)\(\ge\frac{25}{\frac{1}{4}\left(a+b+4\right)^2}\)\(=1\)

\(A_{min=1}\)\(khi\){ a = 5 

                            b = 1

15 tháng 9 2020

Lần đầu tiên làm toán lớp 8 , có gì sai sót mong bạn chỉ ra hộ mình

13 tháng 7 2020

Mình đã làm 1 cách trong TKHĐ giờ làm cách 2 nhá

\(c+\frac{1}{b}=a+\frac{b}{a}\)

\(\Leftrightarrow c-a=\frac{b}{a}-\frac{1}{b}=\frac{b^2-a}{ab}\)

Khi đó \(b^2-a⋮ab\Leftrightarrow b^2-a=kab\) với k là số nguyên dương

Khi đó \(b^2=a\left(kb+1\right)\)

Mà \(\left(b;kb+1\right)=1\Rightarrow kb+1=1\Rightarrow kb=0\Rightarrow k=0\)

\(\Rightarrow a=b^2\Rightarrow ab=b^3\left(đpcm\right)\)

17 tháng 11 2019

nguowch đề :))

17 tháng 11 2019

\(ab^2+b+7⋮a^2b+a+b\Leftrightarrow a\left(ab^2+b+7\right)-b\left(a^2b+a+b\right)⋮a^2b+a+b\Leftrightarrow7a-b^2⋮a^2b+a+b\left(1\right)\)

\(+,7a=b^2\Rightarrow\left(a;b\right)=\left(7k^2;7k\right)\left(k\text{ nguyên dương}\right)\)

\(+,7a>b^2\text{ từ 1}\Rightarrow7a-b^2\ge a^2b+a+b\Leftrightarrow6a\ge a^2b+b+b^2\text{ mà: b là số nguyên dương}\Rightarrow b< 3\Leftrightarrow b\in\left\{1;2\right\}\)

làm tiếp

\(+,7a< b^2\text{ từ (1)}\Rightarrow b^2-7a\ge a^2b+a+b\Leftrightarrow voli\text{ :)}.Tự\text{ kết luận}\)

10 tháng 7 2020

Gọi \(d=gcd\left(a;b\right)\) khi đó \(a=dm;b=dn\) với \(\left(m;n\right)=1\)

Ta có:

\(c+\frac{1}{b}=a+\frac{b}{a}\Leftrightarrow c=\frac{b}{a}+a-\frac{1}{b}=\frac{dn}{dm}+dm-\frac{1}{dn}\)

\(=\frac{n}{m}+dm-\frac{1}{dn}=\frac{dn^2+d^2m^2n-m}{dmn}\)

Khi đó \(dn^2+d^2m^2n-m⋮dmn\Rightarrow m⋮n\) mà \(\left(m;n\right)=1\Rightarrow n=1\Rightarrow m=d\)

Khi đó \(ab=dm\cdot dn=d^3\) là lập phương số nguyên dương

19 tháng 9 2016

thtfgfgfghggggggggggggggggggggg

27 tháng 5 2021

thật ra nó là lớp 7 đấy nhưng mình nghĩ lớp 8 mới giỏi mói giải đc

 

27 tháng 5 2021

Giả sử \(a^2+1\) và \(b^2+1\) cùng chia hết cho số nguyên tố p

\(\Rightarrow a^2-b^2⋮p\)

\(\Rightarrow\left(a-b\right)\left(a+b\right)⋮p\Rightarrow\left[{}\begin{matrix}a-b⋮p\\a+b⋮p\end{matrix}\right.\).

+) Nếu \(a-b⋮p\) thì ta có \(\left(a^2+1\right)\left(b^2+1\right)-\left(a-b\right)^2⋮p\Rightarrow\left(ab+1\right)^2⋮p\Rightarrow ab+1⋮p\) (vô lí do (a - b, ab + 1) = 1)

+) Nếu \(a+b⋮p\) thì tương tự ta có \(ab-1⋮p\). (vô lí)

Do đó \(\left(a^2+1,b^2+1\right)=1\).

Giả sử \(\left(a+b\right)^2+\left(ab-1\right)^2=c^2\) với \(c\in\mathbb{N*}\)

Khi đó ta có \(\left(a^2+1\right)\left(b^2+1\right)=c^2\).

Mà \(\left(a^2+1,b^2+1\right)=1\) nên theo bổ đề về số chính phương, ta có \(a^2+1\) và \(b^2+1\) là các số chính phương.

Đặt \(a^2+1=d^2(d\in\mathbb{N*})\Rightarrow (d-a)(d+a)=1\Rightarrow d=1;a=0\), vô lí.

Vậy ....