Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hai bài toán rất hay và lạ! Xin cảm ơn bạn Tuấn Minh.
Và mình không hiểu người post cái bài dài dài kia (bạn Thành - sau mà đổi tên là không biết tên gì nốt) nói gì luôn. @@@.
1./ Tìm các số nguyên dương x;y;z sao cho: \(\hept{\begin{cases}x+3=2^y\left(1\right)\\3x+1=4^z\left(2\right)\end{cases}}\)
- Ta thấy y=0; 1 không phải là nghiệm của bài toán.
- Với y =2 thì x=1; z=1 là 1 nghiệm của bài toán.
- Với y>=3 thì:
- Từ (2) suy ra: \(3x=4^z-1=\left(4-1\right)\left(4^{z-1}+4^{z-2}+...+4^2+4+1\right)\)
\(\Leftrightarrow x=4^{z-1}+4^{z-2}+...+4^2+4+1\)
- Thay vào (1) ta có: \(\left(1\right)\Leftrightarrow4^{z-1}+4^{z-2}+...+4^2+4+1+3=2^y\)
\(\Leftrightarrow4^{z-1}+4^{z-2}+...+4^2+4+4=2^y\)
\(\Leftrightarrow8\cdot2\cdot4^{z-3}+8\cdot2\cdot4^{z-4}+...+8\cdot2\cdot4+8\cdot2+8=2^y\)
\(\Leftrightarrow8\cdot\left(2\cdot4^{z-3}+2\cdot4^{z-4}+...+2\cdot4+2+1\right)=8\cdot2^{y-3}\)
\(\Leftrightarrow\left(2\cdot4^{z-3}+2\cdot4^{z-4}+...+2\cdot4+2+1\right)=2^{y-3}\)
Ta thấy vế trái lẻ nên đạt được dấu bằng chỉ khi y=3; khi đó x=5 và z=2.
- Vậy bài toán có 2 bộ nghiệm nguyên là: \(\hept{\begin{cases}x=1;y=2;z=1\\x=5;y=3;z=2\end{cases}}\)
a^3-b^3-c^3=3abc lớn hơn 0 suy ra a lớn hơn b;a lớn hơn c
suy ra 2a lớn hơn b+c
suy ra 4a lớn hơn 2(b+c)
suy ra 4 lớn hơn a
2(b+c)=a^2 chia hết cho 2
suy ra a chia hết cho 2
suy ra a=2 suy ra b=c=1
a^3-b^3-c^3=3abc lớn hơn 0 suy ra a lớn hơn b;a lớn hơn c
suy ra 2a lớn hơn b+c
suy ra 4a lớn hơn 2(b+c)
suy ra 4 lớn hơn a
2(b+c)=a^2 chia hết cho 2
suy ra a chia hết cho 2
suy ra a=2 suy ra b=c=1
Ta có: \(a,b,c\in Z+\)
=> abc>0 =>3abc>0
=>a3-b3-c3>0
=>\(\hept{\begin{cases}a>b\\a>c\end{cases}}\)
=>\(a+a>b+c\)
=> \(2a>b+c\)
=>\(4a>2\left(b+c\right)\)
=>\(4a>a^2\)=>\(4>a\)(1)
Mà a2=2(b+c) (*) chia hết cho 2 =>a chia hết cho 2 (2)
Từ (1) và (2) => a=2
Thay a=2 vào (*) =>\(b+c=2\), mà \(b,c\in Z+\) =>b=c=1
KL: (a,b,c)=(2,1,1)
a;b;c là số nguyên dương =>3abc>0
=>a^3>b^3=> a>b
và a^3>c^3=>a>c
=>2a>b+c
=>4a>2.(b+c)=a^2
=>4>a
2.(b+c) là số chẵn =>a^2 là số chẵn=>a là số chẵn=>a=2
vì b;c<2=a và b;c là các số nguyên dương =>b=c=1
vậy a=2;b=1;c=1
a;b;c là số nguyên dương =>3abc>0
=>a^3>b^3=> a>b
và a^3>c^3=>a>c
=>2a>b+c
=>4a>2.(b+c)=a^2
=>4>a
2.(b+c) là số chẵn =>a^2 là số chẵn=>a là số chẵn=>a=2
vì b;c<2=a và b;c là các số nguyên dương =>b=c=1
vậy a=2;b=1;c=1
a=1; b=1