Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Vì \(\overline{abcd},\overline{ab}\) và \(\overline{ac}\) là các số nguyên tố
\(\Rightarrow b,c,d\) là các số lẻ khác \(5\)
Ta có:
\(b^2=\overline{cd}+b-c\Leftrightarrow b\left(b-1\right)=\overline{cd}-c\)
\(=10c+d-c=10c-c+d=9c+d\)
Do \(9c+d\ge10\) nên \(b\left(b-1\right)\ge10\)
\(\Rightarrow b\ge4\). Do đó \(\left[{}\begin{matrix}b=7\\b=9\end{matrix}\right.\)
Ta có các trường hợp sau:
\(*)\) Nếu \(b=7\) ta có:
\(9c+d=42⋮3\Rightarrow d⋮3\) \(\Rightarrow\left[{}\begin{matrix}d=3\\d=9\end{matrix}\right.\)
Với \(d=3\Rightarrow9c=39\Rightarrow\) Không tồn tại \(c\in N\)
Với \(d=9\Rightarrow9c+d⋮9\) còn \(42\) \(⋮̸\) \(9\) (loại)
\(*)\) Nếu \(b=9\) ta có:
\(9c+d=72⋮9\Rightarrow d⋮9\Rightarrow d=9\)
\(9c+9=72\Rightarrow9c=63\Rightarrow c=7\)
\(\overline{ab}=\overline{a9}\) là số nguyên tố \(\Rightarrow a\ne3;6;9;4\)
\(\overline{ac}=\overline{a7}\) là số nguyên tố \(\Rightarrow a\ne2;5;7;8\)
Mặt khác \(a\ne0\Rightarrow a=1\)
Vậy số cần tìm là \(1979\) (thỏa mãn số nguyên tố)
Tham khảo: cho a,b,c đôi một khác nhau và khác 0. Biết ab là số nguyên tố và ab/bc=b/c. tìm số abc- Mạng Giáo Dục Pitago.Vn – Giải pháp giúp em học toán vững vàng!
số nguyên tố nhỏ nhất : 2
số lớn nhất có 1 chữ số : 9
số nguyên số chia hết cho 5 ( có 1 chữ số ) : 5
số nhỏ nhất chia hết cho 5 ( có 1 chữ số ) : 5
abcd = 2955
Số nguyên tố nhỏ nhất là 2 => a = 2
Số lớn nhất có 1 chữ số là 9 => b = 9
Số nguyên tố chia hết cho 5 là 5 => c = 5
Số nhỏ nhất chia hết cho 5 là 0 => d = 0
abcd = 2950. Năm đó là năm 2950
Mình thấy nó vô lí thế nào ấy
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{ab}{bc}=\frac{b}{c}=\frac{ab-b}{bc-c}=\frac{\left(10a+b\right)-b}{\left(10b+c\right)-c}=\frac{10a}{10b}=\frac{a}{b}\)
\(\Rightarrow b^2=a.c\)
Do ab nguyên tố nên b lẻ khác 5 \(\Rightarrow b\in\left\{1;3;7;9\right\}\)
+ Với b = 1 thì 12 = a.c = 1 => a = c = 1, vô lý vì \(a\ne b\ne c\)
+ Với b = 3 thì 32 = a.c = 9 \(\Rightarrow\left[\begin{array}{nghiempt}a=c=3\\a=1;c=9\\a=9;c=1\end{array}\right.\), ta chọn được 1 cặp giá trị (a;c) thỏa mãn \(a\ne b\ne c\) và ab nguyên tố là (1;9)
+ Với b = 7 thì 72 = a.c = 49 => a = c = 7, vô lý vì \(a\ne b\ne c\)
+ Với b = 9 thì 92 = a.c = 81 => a = c = 9, vô lý vì \(a\ne b\ne c\)
Vậy abc = 139
Ta có:\(\frac{ab}{bc}=\frac{b}{c}\)(ab,bc có dấu gạch ngang trên đầu)
\(\Rightarrow\frac{10a+b}{10b+c}=\frac{b}{c}\)
\(\Rightarrow\left(10a+b\right)c=\left(10b+c\right)b\)
\(\Rightarrow10ac+bc=10b^2+bc\)
\(\Rightarrow10ac=10b^2\)
\(\Rightarrow ac=b^2\)
\(\Rightarrow abc=\) bao nhiêu tự tính(tui quên các chữ số đôi một là như thế nào rồi và abc có dấu gạch ngang trên đầu)
DO A LÀ SỐ CHÍNH PHƯƠNG VÀ A KHÁC 0 , A CÓ 1 CHỮ SỐ
=> A CÓ THỂ BẰNG 1 . 4 . 9
+, TH1 : A = 1
=> 1D LÀ SỐ CHÍNH PHƯƠNG
=> D = 6
=> C6 LÀ SỐ CHÍNH PHƯƠNG
=> C = 3 HOẶC BẰNG 1( TH 1 KHÔNG THỎA MÃN)
=> 1B36 LÀ SỐ CHÍNH PHƯƠNG
=> B = 9 ( DO 44^2 = 1936
+. TH2 : A= 4
=> 4D LÀ SỐ CHÍNH PHƯƠNG
=> D = 9
=> C9 LÀ SỐ CHÍNH PHƯƠNG
=> C HOẶC BẰNG 0 , HOẶC BẰNG 4
+. NẾU C = 0
=> 4B09 LÀ SỐ CHÍNH PHƯƠNG
=> LOẠI DO KHÔNG CÓ B THỎA MÃN
+, NẾU C = 4
=> 4B49 LÀ SỐ CHÍNH PHƯƠNG
=> KHÔNG TỒN TẠI B THỎA MÃN
+, A = 9
=> 9D LÀ SỐ CHÍNH PHƯƠNG
=> KHÔNG TÍM THẤY D THỎA MÃN
VẬY A= 1 , B = 9 , C=3 , D=6
a=1,4,9.
Nếu a=1→b=6→c=9, nhưng không có d thỏa mãn giả thiết
Nếu a=4→b=9, nhưng không có c thỏa mãn giả thiết.
Nếu a=9→b=, nhưng khôn có c thoản mãn giả thiết.
Vậy không tồn tại a,b,c,d thỏa đề ra !
Áp dụng tính chất của dãy tỉ số bằng nhau:
ab/ac =b/c= ab-b/bc-c =10a/10b
=>b² = a.c
Do ab là nguyên tố nên b lẻ khác 5. Mà b là chữ số.
=> b ∈ 1; 3; 7; 9
Ta xét các chữ số:
- Với b = 1 thì 1² = a.c ⇒ a = c = 1. ( loại vì a; b; c khác nhau )
- Với b = 3 thì 3² = a.c = 9, ta chọn được giá trị a = 1 và c = 9. ( nhận )
- Với b = 7 thì b² = a.c = 49, ta chỉ chọn được cặp giá trị a = c = 7 vì a và c là chữ số. ( loại )
- Với b = 9 thì 9² a.c = 81, ta cũng chỉ chọn được cặp giá trị a = c = 9 vì a và c là chữ số. ( loại )
Vậy abc = 139.