Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{5a+7b}{6a+5b}=\frac{29}{28}\)
=>(5a+7b)28=(6a+5b)29
=>140a+196b=174a+145b
=>(196 - 145)b=(174 - 140 )a
=>51b=34a
=>\(\frac{a}{b}=\frac{51}{34}=\frac{3}{2}\)
=>a=3k
b=2k
\(\left(k\in N\right)\)
Mà (2;3)=1
(a;b)=1
=>K=1
=>a=3
b=2
a, Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=k\)\(\Rightarrow a=2k\); \(b=3k\); \(c=5k\)
Ta có: \(B=\frac{a+7b-2c}{3a+2b-c}=\frac{2k+7.3k-2.5k}{3.2k+2.3k-5k}=\frac{2k+21k-10k}{6k+6k-5k}=\frac{13k}{7k}=\frac{13}{7}\)
b, Ta có: \(\frac{1}{2a-1}=\frac{2}{3b-1}=\frac{3}{4c-1}\)\(\Rightarrow\frac{2a-1}{1}=\frac{3b-1}{2}=\frac{4c-1}{3}\)
\(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{1}=\frac{3\left(b-\frac{1}{3}\right)}{2}=\frac{4\left(c-\frac{1}{4}\right)}{3}\) \(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{12}=\frac{3\left(b-\frac{1}{3}\right)}{2.12}=\frac{4\left(c-\frac{1}{4}\right)}{3.12}\)
\(\Rightarrow\frac{\left(a-\frac{1}{2}\right)}{6}=\frac{\left(b-\frac{1}{3}\right)}{8}=\frac{\left(c-\frac{1}{4}\right)}{9}\)\(\Rightarrow\frac{3\left(a-\frac{1}{2}\right)}{18}=\frac{2\left(b-\frac{1}{3}\right)}{16}=\frac{\left(c-\frac{1}{4}\right)}{9}\)
\(\Rightarrow\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-\left(c-\frac{1}{4}\right)}{18+16-9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-c+\frac{1}{4}}{25}\)
\(=\frac{\left(3a+2b-c\right)-\left(\frac{3}{2}+\frac{2}{3}-\frac{1}{4}\right)}{25}=\left(4-\frac{23}{12}\right)\div25=\frac{25}{12}\times\frac{1}{25}=\frac{1}{12}\)
Do đó: +) \(\frac{a-\frac{1}{2}}{6}=\frac{1}{12}\)\(\Rightarrow a-\frac{1}{2}=\frac{6}{12}\)\(\Rightarrow a=1\)
+) \(\frac{b-\frac{1}{3}}{8}=\frac{1}{12}\)\(\Rightarrow b-\frac{1}{3}=\frac{8}{12}\)\(\Rightarrow b=1\)
+) \(\frac{c-\frac{1}{4}}{9}=\frac{1}{12}\)\(\Rightarrow c-\frac{1}{4}=\frac{9}{12}\)\(\Rightarrow c=1\)
soyeon_Tiểubàng giải1 tháng 10 2016 lúc 20:35
Ta có:
5a + 7b/6a + 5b = 29/28
=> (5a + 7b).28 = (6a + 5b).29
=> 140a + 196b = 174a + 145b
=> 196b - 145b = 174a - 140a
=> 51b = 34a
=> 3b = 2a
=> a/b = 3/2
Mà (a,b)=1; a,b thuộc N
=> a = 3; b = 2
Vậy a = 3; b = 2
bài của bạn Nguyễn Văn Hòa hợp con nhà bà lý luôn
=) =) =) =) =)
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{ab}\)
=> \(\frac{a+b}{ab}=\frac{1}{ab}\)=> a+b=1 => a,b là số nguyên sao cho a+b=1
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{ab}\)
\(\frac{b}{ab}+\frac{a}{ab}=\frac{1}{ab}\)
\(\frac{b+a}{ab}=\frac{1}{ab}\)
\(\Rightarrow b+a=1\)
Vậy các giá trị nguyên của a,b phụ thuộc vào b + a = 1
Tham khảo qua link đây nhé cậu :
https://books.google.com.vn/books?id=PhymDAAAQBAJ&pg=PA59&lpg=PA59&dq=T%C3%ACm+c%C3%A1c+s%E1%BB%91+nguy%C3%AAn+a,b,c+th%E1%BB%8Fa+m%C3%A3n+a%5E2%2Bab%3D5a%2B2b%2B9&source=bl&ots=8bzSP0h3kN&sig=ACfU3U2A_d9ME7r47hAsdMemtJWUaW1w_A&hl=vi&sa=X&ved=2ahUKEwjg89-r0_HoAhUkK6YKHWIXCnkQ6AEwAnoECAwQKw#v=onepage&q=T%C3%ACm%20c%C3%A1c%20s%E1%BB%91%20nguy%C3%AAn%20a%2Cb%2Cc%20th%E1%BB%8Fa%20m%C3%A3n%20a%5E2%2Bab%3D5a%2B2b%2B9&f=false
Học tốt
\(a^2 + ab = 5a + 2b + 9 \)
\(\Leftrightarrow a^2+ab-5a-2b+6=15\)
\(\Leftrightarrow a\left(a+b\right)-2\left(a+b\right)-3\left(a-2\right)=15\)
\(\Leftrightarrow\left(a-2\right)\left(a+b\right)-3\left(a-2\right)=15\)
\(\Leftrightarrow\left(a-2\right)\left(a+b-3\right)=15\)
Do \(a,b\in Z\Rightarrow\hept{\begin{cases}a-2\in Z\\a+b-3\in Z\end{cases}}\)
\(\Rightarrow\left(a-2\right);\left(a+b-3\right)\inƯ\left(15\right)=\left\{1;-1;3;-3;5;-5;15;-15\right\}\)
\(\left(+\right)\hept{\begin{cases}a-2=1\\a+b-3=15\end{cases}\Rightarrow}a=3;b=15\)
\(\left(+\right)\hept{\begin{cases}a-2=-1\\a+b-3=-15\end{cases}\Rightarrow}a=1;b=-13\)
\(\left(+\right)\hept{\begin{cases}a-2=3\\a+b-3=5\end{cases}\Rightarrow}a=5;b=3\)
\(\left(+\right)\hept{\begin{cases}a-2=-3\\a+b-3=-5\end{cases}}\Rightarrow a=-1;b=-1\)
\(\left(+\right)\hept{\begin{cases}a-2=15\\a+b-3=1\end{cases}\Rightarrow}a=17;b=-13\)
\(\left(+\right)\hept{\begin{cases}a-2=-15\\a+b-3=-1\end{cases}\Rightarrow}a=-13;b=15\)
\(\left(+\right)\hept{\begin{cases}a-2=5\\a+b-3=3\end{cases}\Rightarrow a=7;b=-1}\)
\(\left(+\right)\hept{\begin{cases}a-2=-5\\a+b-3=-3\end{cases}\Rightarrow}a=-3;b=3\)
Vậy \(\left(a,b\right)=\left(3,15\right);\left(1,-13\right);\left(5,3\right);\left(-1,-1\right);\left(17,-13\right);\left(-13,15\right);\left(7,-1\right);\left(-3,3\right)\)