Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^2-3x+4 x^4-3x^3+ax+b x^2-4 x^4-3x^3+4x^2 -4x^2+ax+b -4x^2+12x-16 (a-12)x+(b+16)
Để \(A\left(x\right)⋮\left(x^2-3x+4\right)\)
thì \(\left(a-12\right)x+\left(b+16\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}a-12=0\\b+16=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=12\\b=-16\end{cases}}\)
bạn Best_Suarez làm sai rồi,A+B=0 thì đâu chỉ A=0,B=0,còn có thể là số âm mà
Đa thức bị chia bậc 4, đa thức chia bậc 2 nên đa thức thương bậc 2, hạng tử bậc cao nhất là: x4 : x2 = x2.
Gọi thương là x2 + mx + n, ta có:
A(x) = x4 - 3x3 + ax + b = (x2 - 3x + 4)(x2 + mx + n)
= x4 + mx3 + nx2 - 3x3 - 3mx2 - 3nx + 4x2 + 4mx + 4n
= x4 + (m - 3)x3 + (n - 3m + 4)x2 - (3n - 4m)x + 4n
\(\Leftrightarrow\)m - 3 = -3 \(\Leftrightarrow\) m = 0
n - 3m + 4 = 0 n = -4
3n - 4m = -a a = 12
4n = b b = 16
Vậy a = 12; b = 16
bạn chia ra nó sẽ rư (a-12)x+16+b. để A chia hết cho B thì (a-12)x+16+b=0. Suy ra a-12=0;b+16=0 suy ra a=12;b=16
ta có (x^2-3x+4)(cx^2+dx+e)
=cx^4+dx^3+ex^2-3cx^3-3dx^2-3ex+4cx^2+4dx+4e
=cx^4+(d-3c)x^3+(e-3d+4c)x^2+(-3e+4d)x+4e
đồng nhất với đa thức A(x) ta có c=1 d-3c=0 e-3d+4c=-3 -3e+4d=a 4e=b
d-3c=0 thế c=1 ta có d-3.1=0 suy ra d=3
e-3d+4c=-3 thế c=1,d=3 ta có e-3.3+4.1=-3 suy ra e=2
-3e+4d=a thế e=2,d=3 ta có a=6
4e=b thế e=2 suy ra b=8
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
Thương có dạng là \(x^2+cx+d\). Nhân nó với \(x^2-3x+4\) rồi đồng nhất với \(x^4-3x^3+ax+b\)
Và giờ đây là cuộc chiến của bạn, giải quyết nó đi!
Đặt phép chia A(x) cho B(x) được thương là \(x^2+3x+2\)và còn dư \(x\left(a-6\right)+b-8\)
\(\rightarrow\)Để A(x) chia hết cho B(x) thì \(x\left(a-6\right)+b-8=0\rightarrow\hept{\begin{cases}a=6\\b=8\end{cases}}\)
nói thêm ax+b=0 suy ra a=0 và b=0