Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{\left(a^3+a^2\right)+\left(a^2-1\right)}{\left(a^3+1\right)+\left(2a^2+2a\right)}=\frac{a^2\left(a+1\right)+\left(a+1\right)\left(a-1\right)}{\left(a+1\right)\left(a^2-a+1\right)+2a\left(a+1\right)}\)
\(=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2-a+1+2a\right)}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)
b) gọi d là UWCLN của a^2 +a +1 và a^2 + a -1
ta có a^2 + a -1 = a(a+1) - 1 là số lẻ nên d à số lẻ
mawth khác( a^2 + a +1) - (a^2+a-1) = 2 chia hết cho d nên d =1 hay a^2+a-1 và a^2+a+1 là 2 số nguyên tố cùng nhau
vậy A là phân số tối giản
a) \(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)
b) \(A=\frac{a\left(a+1\right)-1}{a\left(a+1\right)+1}\)
Với \(a\)nguyên thì \(a\left(a+1\right)\)là tích hai số nguyên liên tiếp nên là số chẵn, do đó \(a\left(a+1\right)-1,a\left(a+1\right)+1\)là hai số lẻ liên tiếp. Do đó \(A\)là phân số tối giản.
a. Ta có biến đổi:
\(A=\frac{a^3+2a^2-1}{a^3+2a^3+2a+1}\)
\(A=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}\)
\(A=\frac{a^2+a-1}{a^2+a+1}\)
b. Gọi d là ước chung lớn nhất của \(a^2+a-1\)và \(a^2+a+1\)
Vì \(a^2+a-1=a\left(a+1\right)-1\)là số lẻ nên d là số lẻ
Mặt khác, \(2=\left[a^2+a+1-\left(a^2+a-1\right)\right]⋮d\)
Nên d = 1 tức là \(a^2+a+1\)và \(a^2+a-1\)nguyên tố cùng nhau.
Vậy biểu thức A là phân số tối giản.
a, A = 1 + 3 + 32 + 33 +....+32022
3A = 3 + 32 + 33 +.....+32022 + 32023
3A - A = 32023 - 1
2A = 32023 - 1
2A - 22023 = 32023 - 1 - 22023
2A - 22023 = -1
b, x \(\in\) Z và x + 10 \(⋮\) x - 1 ( đk x# 1)
x + 10 \(⋮\) x - 1
\(\Leftrightarrow\) x - 1 + 11 \(⋮\) x - 1
11 \(⋮\) x - 1
x-1 \(\in\) { -11; -1; 1; 11}
x \(\in\) { -10; 0; 2; 12}
Kết luận các số nguyên x thỏa mãn yêu cầu đề bài là :
x \(\in\) { -10; 0; 2; 12}
Bạn tham khảo tại đây:
Câu hỏi của Chibi Anime - Toán lớp 6 - Học toán với OnlineMath
Ta có \(M=\frac{2a+8}{5}+\frac{-a-7}{5}=\frac{2a+8-a-7}{5}=\frac{a+1}{5}\)
Để \(M\inℤ\Leftrightarrow\frac{a+1}{5}\inℤ\Leftrightarrow a+1⋮5\Leftrightarrow a+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Ta có bảng sau :
a+1 | 1 | -1 | 5 | -5 |
a | 0 | -2 | 4 | -6 |
Vậy \(a\in\left\{0;-2;4;-6\right\}\)
Bạn có thể dựa theo bài này
https://olm.vn/hoi-dap/question/84156.html
Bạn sao chép rồi làm nha
Tk mk nha
https://olm.vn/hoi-dap/question/84156.html
Bạn dựa theo câu hỏi này nha
Tk mk nha
để E thuộc Z
=>2a+14 chia hết 2a+1
=>2a+1+13 chia hết 2a+1
=>13 chia hết 2a+1
=>2a+1\(\in\){1,-1,13,-13}
=>a\(\in\){0;-1;6;-7}
\(E=\frac{2a+14}{2a+1}=\frac{2a+1+13}{2a+1}=\frac{2a+1}{2a+1}+\frac{13}{2a+1}=1+\frac{13}{2a+1}\)
E nguyên <=> 13/2a+1 nguyên
<=>13 chia hết cho 2a+1
<=>2a+1 \(\in\) Ư(13)={-13;-1;1;13}
=>2a \(\in\) {-14;-2;0;12}
=>a \(\in\) {-7;-1;0;6}