Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì abcd,ab,ac là số nguyên tố nên là số lẻ hay b,c,d lẻ và khác 5. Ta có :
b2 = cd + b - c \(\Rightarrow\)b ( b - 1 ) = cd - c = 10c + d - c = 9c + d \(\ge\)10
\(\Rightarrow\)b \(\ge\)4 \(\Rightarrow\) b = 7 hoặc b = 9
+) b = 7 ta có : 9c + d = 42 \(\Rightarrow\)d \(⋮\)3 \(\Rightarrow\)d = 3 hoặc d = 9
Nếu d = 3 thì c = \(\frac{39}{9}\)( loại )
Nếu d = 9 thì c = \(\frac{33}{9}\)( loại )
+) b = 9 thì 9c + d = 72 \(\Rightarrow\)d = 9 ; c = 7
Mà a7 và a9 là số nguyên tố thì a = 1
Vậy abcd = 1979
Anh tham khảo tại đây:
Câu hỏi của Đinh Đức Hùng - Toán lớp 8 - Học toán với OnlineMath
Giả sử \(\frac{a^2+b^2}{ab-1}=k\left(k\in Z\right)\). Ta sẽ đi tìm k và chứng minh k là số nguyên tố.
Đặt \(m=a+b;n=a-b\), ta có \(\frac{a^2+b^2}{ab-1}=k\Rightarrow\frac{m^2+n^2}{m^2-n^2-4}=\frac{k}{2}\)
TH1: Nếu trong a và b có một số chẵn, một số lẻ:
Khi đó k là số lẻ. Đặt \(d=\left(m^2+n^2;m^2-n^2-4\right)\Rightarrow d=\left(2m^2-4,2n^2+4\right)\)
\(\Leftrightarrow\) d | 2(m2 + n2) = 4(a2 + b2)
Mà \(\hept{\begin{cases}m^2+n^2=kd\\m^2-n^2-4=2d\end{cases}}\)
\(\Leftrightarrow2x^2-4=d\left(k+2\right)\Rightarrow\) d chia hết 2.
Lại có a2 + b2 là số lẻ nên d = 2 hoặc d = 4.
Thay vào hệ bên trên và giả thiết thì (a,b) = (-2;-1) hoặc (2;1). Khi đó k = 5 và nó là số nguyên tố.
TH2: Nếu cả a và b đều lẻ
\(\Rightarrow a=2k+1;b=2h+1\Rightarrow k=\frac{2\left(k^2+h^2+k+h\right)+1}{2kh+k+h}\) là số lẻ.
Tương tự như bên trên ta có d | 4(a2 + b2) = 8(2k2 + 2h2 + 2k + 2h + 1)
Và 2m2 - 4 = (k+2)d \(\Rightarrow d⋮2\Rightarrow d\in\left\{2;4;8\right\}\)
Thế vào hệ ta cũng tìm được (a;b) = (3;1) hoặc (-3;-10 và k = 5.
Vậy k luôn bằng 5 và nó là số nguyên tố.
Đáp án:
Giải thích các bước giải:
ab|a−b|⇒ab=c|a−b|ab|a−b|⇒ab=c|a−b|
Vì cc là số nguyên tố $⇒ achiahếtchiahếtc$ hoặc bb chia hết cc
$⇒c∈{ 2;3;5;7}$
$c=2⇒ab=2|a-b|$
Nếu $a>b⇒b=$$\dfrac{2a}{a+a}=2$ $\dfrac{4}{a+2}∈N$ $⇒a=2$
$⇒b=1(TM)$
Nếu $a<b⇒a=\dfrac{2b}{b+2}$ tương tự như trên $⇒b=2$
$⇒a=1( TM)$
+ Nếu c=3;5;7c=3;5;7 bạn tự làm nha.
Đặt ab /|a−b| =c
⇒ab=c|a-b|
c là số nguyên tố⇒\(\orbr{\begin{cases}a⋮c\\b⋮c\end{cases}}\)
c là số nguyên tố⇒c∈{2,3,5,7}
TH1:c=2
⇒ab=2|a-b|
+)a>b⇒b=b=2a/a+2=2-4/a+2 ∈N
⇒a=2
⇒b=1
+)a<b⇒a=a=2b/b+2=2-4/b+2 ∈N
⇒b=2
⇒a=1
CMT²⇒......