Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi thương của phép chia ax3+bx2+c cho x-2 là f(x) ta đc
ax3+bx2+c=(x-2).f(x)
Đẳng thức trên luôn đúng với mọi x
* với x=2 thì 8a+4b+c=0 (1)
gọi thương của ax3+bx2+c cho x2-1 là q(x) ta có
ax3+bx2+c=(x-1)(x+1).q(x)+2x+5
đẳng thức trên luôn đúng
* với x=1 thì a+b+c=7 (2)
* với x=-1 thì -a+b+c=3 (3)
từ (1) , (2) và (3) ta có
a=2 ,b=7 , c=-2
gọi thương của phép chia ax3+bx2+c cho x-2 là f(x) ta đc
ax3+bx2+c=(x-2).f(x)
Đẳng thức trên luôn đúng với mọi x
* với x=2 thì 8a+4b+c=0 (1)
gọi thương của ax3+bx2+c cho x2-1 là q(x) ta có
ax3+bx2+c=(x-1)(x+1).q(x)+2x+5
đẳng thức trên luôn đúng
* với x=1 thì a+b+c=7 (2)
* với x=-1 thì -a+b+c=3 (3)
từ (1) , (2) và (3) ta có
a=2 ,b=7 , c=-2
Bài 1: Đặt \(f\left(x\right)=\left(x^2+x+1\right)^{10}+\left(x^2-x+1\right)^{10}-2\)
Giả sử \(f\left(x\right)\)chia hết cho x-1
\(\Rightarrow f\left(x\right)=\left(x-1\right)q\left(x\right)\)
\(\Rightarrow f\left(1\right)=\left(1-1\right)q\left(1\right)\)
\(=0\)
\(\Leftrightarrow\left(1^2+1+1\right)^{10}+\left(1^2-1+1\right)^{10}-2=0\)
Mà \(\left(1^2+1+1\right)^{10}+\left(1^2-1+1\right)^{10}-2=59048\)
\(\Rightarrow\)mâu thuẫn
\(\Rightarrow f\left(x\right)\)không chia hết cho x-1 ( trái với đề bài )
Bài 2:
x^4-x^3-3x^2+ax+b x^2-x-2 x^2-1 x^4-x^3-2x^2 - - -x^2+ax+b -x^2+x+2 - (a-1)x+b-2
Vì \(x^4-x^3-3x^2+ax+b\)chia cho \(x^2-x-2\)dư \(2x-3\)
\(\Rightarrow\left(a-1\right)x+b-2=2x-3\)
Đồng nhất hệ số 2 vế ta được:
\(\hept{\begin{cases}a-1=2\\b-2=-3\end{cases}\Leftrightarrow}\hept{\begin{cases}a=3\\b=-1\end{cases}}\)
Vậy ...
Bài 3:
Vì \(P\left(x\right)\)chia \(x+3\)dư 1
\(\Rightarrow P\left(x\right)=\left(x+3\right)q\left(x\right)+1\)
\(\Rightarrow q\left(-3\right)=\left(-3+3\right)q\left(-3\right)+1\)
\(=1\left(1\right)\)
Vì \(P\left(x\right)\)chia \(x-4\)dư 8
\(\Rightarrow P\left(x\right)=\left(x-4\right)q\left(x\right)+8\)
\(\Rightarrow P\left(4\right)=\left(4-4\right)q\left(4\right)+8\)
\(=8\left(2\right)\)
Vì \(P\left(x\right)\)chia cho \(\left(x+3\right)\left(x-4\right)\)được thương là 3x và còn dư
\(\Rightarrow P\left(x\right)=\left(x+3\right)\left(x-4\right)3x+ax+b\left(3\right)\)
Từ (1) , (2) và (3) \(\Rightarrow\hept{\begin{cases}-3a+b=1\\4a+b=8\end{cases}\Leftrightarrow\hept{\begin{cases}-12a+3b=4\\12a+3b=24\end{cases}\Leftrightarrow}\hept{\begin{cases}b=4\\a=1\end{cases}\left(4\right)}}\)
Thay (4) vào (3) ta được:
\(P\left(x\right)=\left(x+3\right)\left(x-4\right)3x+x+4\)
\(\Leftrightarrow P\left(x\right)=3x^3-3x^2-20x+4\)
5, a,
Ta có ƯCLN(a,b)=6 \(\Rightarrow\hept{\begin{cases}a_1.6=a\\b_1.6=b\end{cases}}\) với (a1;b1) = 1
=> a+b = a1.6+b1.6 = 6(a1+b1) = 72
=> a1+b1 = 12 = 1+11=2+10=3+9=4+8=5+7=6+6 (hoán vị của chúng)
Vì (a1,b1) = 1
=> a1+b1 = 1+11=5+7
* Với a1+b1 = 1+11
+) TH1: a1 = 1; b1=11 => a =6 và b = 66
+) TH2: a1=11; b1=1 => a=66 và b = 6
* Với a1+b1 = 5+7
+)TH1: a1=5 ; b1=7 => a=30 và b=42
+)TH2: a1=7;b1=5 => a=42 và b=30
Vậy.......
1, a=ƯCLN(128;48;192)
2, b= ƯCLN(300;276;252)
3, Gọi n.k+11=311 => n.k = 300
n.x + 13 = 289 => n.x = 276
=> \(n\inƯC\left(300;276\right)\)
4, G/s (2n+1;6n+5) = d (d tự nhiên)
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\6n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\6n+5⋮d\end{cases}}}\) \(\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+5⋮d\end{cases}\Rightarrow6n+5-\left(6n+3\right)⋮d}\)
\(\Rightarrow2⋮d\Rightarrow d\in\left\{1;2\right\}\)
Vì 2n+1 lẻ => 2n+1 không chia hết cho 2
=> d khác 2 => d=1 => đpcm
Tìm các cặp số nguyên x,y biết
a,\(2x^2+y^2+6=4\left(x-y\right)\)
b,\(x^2\left(y+2\right)+1=y^2\)
a) \(2x^2+y^2+6=4\left(x-y\right)\)
\(\Leftrightarrow2x^2+y^2+6-4x+4y=0\)
\(\Leftrightarrow\left(2x^2-4x+2\right)+\left(y^2+4y+4\right)=0\)
\(\Leftrightarrow2\left(x-1\right)^2+\left(y+2\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
b/ x2(y + 2) + 1 = y2
<=> x2(y + 2) + 1 = (y + 2)(y - 2) + 4
<=> (y + 2)(x2 + 2 - y) = 3
Làm tiếp nhé
gọi hai số đó là a và b, ta có:
\(\hept{\begin{cases}a+b=150\\\frac{1}{9}a+\frac{1}{3}b=42\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{1}{3}a+\frac{1}{3}b=50\\\frac{1}{9}a+\frac{1}{3}b=42\end{cases}}\Leftrightarrow}\frac{1}{3}a-\frac{1}{9}a=8\Leftrightarrow\frac{2}{9}a=8\Leftrightarrow a=36\)
\(\Leftrightarrow b=150-36=114\)
Gọi thương của phép chia 686430a8b cho 2008 là n.
Ta có : 686430080 \(\le\) 2008n \(\le\) 686430989
=> 341848 \(\le\) n \(\le\) 341848
=> n= 341848
=> 2008n=686430784( thỏa mãn)
=> a=7, b=4
Vậy a=7, b=4.