Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^3+x^2-x+a=\left(x^2-x+1\right)\left(x+2\right)+\left(a-2\right)\).
Đa thức trên chia hết cho \(x+2\) khi và chỉ khi a = 2.
b) \(x^3+ax^2+2x+b=\left(x^2+x+1\right)\left(x+1\right)+\left(a-2\right)x^2+\left(b-1\right)\) chia hết cho \(x^2+x+1\) khi và chỉ khi:
\(\frac{a-2}{1}=\frac{0}{1}=\frac{b-1}{1}\Leftrightarrow a=2;b=1\).
c) Tương tự.
a, Ta có \(Q\left(x\right)=x+1=0\Leftrightarrow x=-1\)
Vậy P(x) chia hết cho Q(x) khi P(x) có nghiệm là -1 hay
\(3\left(-1\right)^3+2\left(-1\right)^2-5\left(-1\right)+m=0\Leftrightarrow m=-4\)
b.. ta có \(Q\left(x\right)=x^2-3x+2=0\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
Vậy P(x) chia hết cho Q(x) khi P(x) có nghiệm là 1 và 2 hay
\(\hept{\begin{cases}2+a+b+3=0\\2.2^3+a.2^2+b.2+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=-5\\4a+2b=-19\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-\frac{9}{2}\\b=-\frac{1}{2}\end{cases}}\)
c) Cách 1:
x^4+3x^3-x^2+ax+b x^2+2x-3 x^2+x x^4+2x^3-3x^2 - x^3+2x^2+ax+b x^3+2x^2-3x - (a+3)x+b
Để \(P\left(x\right)⋮Q\left(x\right)\)
\(\Leftrightarrow\left(a+3\right)x+b=0\)
\(\Leftrightarrow\hept{\begin{cases}a+3=0\\b=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-3\\b=0\end{cases}}\)
Vậy a=-3 và b=0 để \(P\left(x\right)⋮Q\left(x\right)\)
a)
2n^2-n+2 2n+1 n-1 2x^2+n - -2n+2 -2n-1 - 3
Để \(2n^2-n+2⋮2n+1\)
\(\Leftrightarrow3⋮2n+1\)
\(\Leftrightarrow2n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Leftrightarrow n\in\left\{0;1;-2;-1\right\}\)
Vậy \(n\in\left\{0;1;-2;-1\right\}\)để \(2n^2-n+2⋮2n+1\)
a: \(\Leftrightarrow x^4-x^3-2x^2-8x^3+8x^2+16x+15x^2-15x-30+a+30⋮x^2-x-2\)
=>a+30=0
=>a=-30
b: \(\Leftrightarrow2x^4-4x^2+4x^2-8+ax+b+8⋮x^2-2\)
=>a=0 và b=-8
2x^3+3x^2-x+a x^2+x-1 2x+1 2x^3+x^2 - - 2x^2-x+a 2x^2+x -2x+a -2x-1 - a+1
Để \(A\left(x\right)⋮B\left(x\right)\Leftrightarrow a+1=0\)
\(\Leftrightarrow a=-1\)
Vậy ...
Sử dụng định lý Bezout:
a/ \(g\left(x\right)=0\Rightarrow\left\{{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
\(f\left(x\right)⋮g\left(x\right)\Rightarrow\left\{{}\begin{matrix}f\left(1\right)=0\\f\left(2\right)=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=1\\2a+b=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=3\\b=-2\end{matrix}\right.\)
b/ \(g\left(x\right)=0\Rightarrow x=-1\)
\(\Rightarrow f\left(-1\right)=0\Rightarrow-a+b=2\Rightarrow b=a+2\)
Tất cả các đa thức có dạng \(f\left(x\right)=2x^3+ax+a+2\) đều chia hết \(g\left(x\right)=x+1\) với mọi a
c/ \(g\left(x\right)=0\Rightarrow x=-2\Rightarrow f\left(-2\right)=0\Rightarrow4a+b=-30\)
\(2x^4+ax^2+x+b=\left(x^2-1\right).Q\left(x\right)+x\)
Thay \(x=1\Rightarrow a+b=-2\)
\(\Rightarrow\left\{{}\begin{matrix}4a+b=-30\\a+b=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{28}{3}\\b=\frac{22}{3}\end{matrix}\right.\)
d/ Tương tự: \(\left\{{}\begin{matrix}f\left(2\right)=8a+4b-40=0\\f\left(-5\right)=-125a+25b-75=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\\b=\end{matrix}\right.\)
a) ta có (2n2-n+2)/(2n+1)=n-1(dư 3)
vậy muốn 2n2-n+2 chia hết cho 2n+1 thì 2n+1ϵƯ(3)
mà Ư(3)={-3;-1;1;3}
nên
2n+1=-3 và 2n+1=-1 và 2n+1=1 và 2n+1=3
=> 2n=-4 và 2n=-2 và 2n=0 và 2n=2
=> n=-2 và n=-1 và n=0 và n=1
vậy nϵ{-2;-1;0;1}
b) ta có x3+x2-x+a/(x+1)2=x-1(dư -x2-2x+a)
mà \(x^2-2x+a-\left(-x^2-2x-1\right)=a+1\)
và muốn \(x^3+x^2-x+a\) chia hết cho \(\left(x+1\right)^2\)thì a+1=0
=> a=-1
Thực hiện phép chia đa thức cho đa thức:
\(x^3+ax^2+2x+b=\left(x^2+x+1\right)\left(x+a-1\right)+\left[1-\left(a-1\right)\right]x+b-\left(a-1\right)\)
Để \(x^3+ax^2+2x+b\) chia hết cho đa thức \(x^2+x+1\):
\(\hept{\begin{cases}1-\left(a-1\right)=0\\b-\left(a-1\right)=0\end{cases}\Leftrightarrow}\hept{\begin{cases}b=1\\a=2\end{cases}}\)