Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt \(\sqrt{2x-5}=t\) khi đó \(x=\frac{t^2+5}{2}\) , \(dx=tdt\)
Do vậy \(I_1=\int\frac{\frac{1}{4}\left(t^2+5\right)^2+3}{t^3}dt=\frac{1}{4}\int\frac{\left(t^4+10t^2+37\right)t}{t^3}dt\)
\(=\frac{1}{4}\int\left(t^2+10+\frac{37}{t^2}\right)dt=\frac{1}{4}\left(\frac{t^3}{3}+10t-\frac{37}{t}\right)+C\)
Trở về biến x, thu được :
\(I_1=\frac{1}{12}\sqrt{\left(2x-5\right)^3}+\frac{5}{2}\sqrt{2x-5}-\frac{37}{4\sqrt{2x-5}}+C\)
b) \(I_2=\frac{1}{3}\int\frac{d\left(\ln\left(3x-1\right)\right)}{\ln\left(3x-1\right)}=\frac{1}{3}\ln\left|\ln\left(3x-1\right)\right|+C\)
c) \(I_3=\int\frac{1+\frac{1}{x^2}}{\sqrt{x^2-7+\frac{1}{x^2}}}dx=\int\frac{d\left(x-\frac{1}{x}\right)}{\sqrt{\left(x-\frac{1}{2}\right)^2-5}}\)
Đặt \(x-\frac{1}{x}=t\)
\(\Rightarrow\) \(I_3=\int\frac{dt}{\sqrt{t^2-5}}=\ln\left|t+\sqrt{t^2-5}\right|+C\)
\(=\ln\left|x-\frac{1}{x}+\sqrt{x^2-7+\frac{1}{x^2}}\right|+C\)
\(I=\int\dfrac{x}{1-cos2x}dx=\int\dfrac{x}{2sin^2x}dx\)
Đặt \(\left\{{}\begin{matrix}u=\dfrac{x}{2}\\dv=\dfrac{1}{sin^2x}dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\dfrac{dx}{2}\\v=-cotx\end{matrix}\right.\)
\(\Rightarrow I=\dfrac{-x.cotx}{2}+\dfrac{1}{2}\int cotxdx=\dfrac{-x.cotx}{2}+\dfrac{1}{2}\int\dfrac{cosx.dx}{sinx}\)
\(=\dfrac{-x.cotx}{2}+\dfrac{1}{2}\int\dfrac{d\left(sinx\right)}{sinx}=\dfrac{-x.cotx}{2}+\dfrac{1}{2}ln\left|sinx\right|+C\)
2/ Câu 2 bữa trước làm rồi, bạn coi lại nhé
3/ \(I=\int\left(2x+1\right)ln^2xdx\)
Đặt \(\left\{{}\begin{matrix}u=ln^2x\\dv=\left(2x+1\right)dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\dfrac{2lnx}{x}dx\\v=x^2+x\end{matrix}\right.\)
\(\Rightarrow I=\left(x^2+x\right)ln^2x-\int\left(2x+2\right)lnxdx=\left(x^2+x\right)ln^2x-I_1\)
\(I_1=\int\left(2x+2\right)lnx.dx\) \(\Rightarrow\left\{{}\begin{matrix}u=lnx\\dv=\left(2x+2\right)dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\dfrac{dx}{x}\\v=x^2+2x\end{matrix}\right.\)
\(\Rightarrow I_1=\left(x^2+2x\right)lnx-\int\left(x+2\right)dx=\left(x^2+2x\right)ln-\dfrac{x^2}{2}+2x+C\)
\(\Rightarrow I=\left(x^2+x\right)ln^2x-\left(x^2+2x\right)lnx+\dfrac{x^2}{2}-2x+C\)
4/ \(I=\int\left(2x-1\right)cosx.dx\) \(\Rightarrow\left\{{}\begin{matrix}u=2x-1\\dv=cosx.dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=2dx\\v=sinx\end{matrix}\right.\)
\(\Rightarrow I=\left(2x-1\right)sinx-2\int sinx.dx=\left(2x-1\right)sinx+2cosx+C\)
5/ \(I=\int\left(x^2+x+1\right)e^xdx\) \(\Rightarrow\left\{{}\begin{matrix}u=x^2+x+1\\dv=e^xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\left(2x+1\right)dx\\v=e^x\end{matrix}\right.\)
\(\Rightarrow I=\left(x^2+x+1\right)e^x-\int\left(2x+1\right)e^xdx\)
\(I_1=\int\left(2x+1\right)e^xdx\) \(\Rightarrow\left\{{}\begin{matrix}u=2x+1\\dv=e^xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=2dx\\v=e^x\end{matrix}\right.\)
\(\Rightarrow I_1=\left(2x+1\right)e^x-2\int e^xdx=\left(2x+1\right)e^x-2e^x+C=\left(2x-1\right)e^x+C\)
\(\Rightarrow I=\left(x^2+x+1\right)e^x-\left(2x-1\right)e^x+C=\left(x^2-x+2\right)e^x+C\)
6/ \(I=\int\left(2x+1\right).ln\left(x+2\right)dx\)
\(\Rightarrow\left\{{}\begin{matrix}u=ln\left(x+2\right)\\dv=\left(2x+1\right)dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\dfrac{dx}{x+2}\\v=x^2+x\end{matrix}\right.\)
\(\Rightarrow I=\left(x^2+x\right)ln\left(x+2\right)-\int\dfrac{x^2+x}{x+2}dx\)
\(=\left(x^2+x\right)ln\left(x+2\right)-\int\left(x-1+\dfrac{2}{x+2}\right)dx\)
\(I=\left(x^2+x\right)ln\left(x+2\right)-\dfrac{x^2}{2}+x-2ln\left|x+2\right|+C\)
Nhớ quy tắc ưu tiên khi tính nguyên hàm từng phần:
- Đặt u sẽ ưu tiên các hàm ln, log đầu tiên (luôn luôn đặt các hàm này là u nếu có mặt), sau đó đến các hàm đa thức P(x), sau đó là lượng giác hoặc e^
- Đặt dv thì theo thứ tự ngược lại, ưu tiên đặt lượng giác (sin, cos) và e^
a) Đặt \(u=x^2\); \(dv=2^xdx\). Khi đó \(du=2xdx\) ; \(v=\int2^xdx=\frac{2^x}{\ln2}\) và \(I_1=x^2\frac{2^x}{\ln2}-\frac{2}{\ln2}\int x2^xdx\)
Lại áp dụng phép lấy nguyên hàm từng phần cho tích phân ở vế phải bằng cách đặt :
\(u=x\) ; \(dv=2^xdx\) và thu được \(du=dx\) ; \(v=\frac{2^x}{\ln2}\) Do đó
\(I_1=x^2\frac{2^x}{\ln_{ }2}-\frac{2}{\ln2}\left[x\frac{2^x}{\ln2}-\frac{1}{\ln2}\int2^xdx\right]\)
= \(x^2\frac{2^x}{\ln_{ }2}-\frac{2}{\ln2}\left[x\frac{2^x}{\ln2}-\frac{2^x}{\ln^22}\right]+C\) = \(\left(x^2-\frac{2}{\ln2}x+\frac{2}{\ln^22}\right)\frac{2^x}{\ln2}+C\)
b) Đặt \(u=x^2\); \(dv=e^{3x}dx\)
Khi đó \(du=2xdx\) ; \(v=\int e^{3x}dx=\frac{1}{3}\int e^{3x}d\left(3x\right)=\frac{1}{3}e^{ex}\)
Do đó:
\(I_2=\frac{x^2}{3}e^{3x}-\frac{1}{3}\int xe^{3x}dx\) (a)
Lại áp dụng phép lấy nguyên hàm từng phần cho nguyên hàm ở vế phải. Ta đặt \(u=x\) ; \(dv=e^{3x}dx\)
Khi đó \(du=dx\) ; \(v=\int e^{3x}dx=\frac{1}{3}e^{3x}\) và
\(\int xe^{ex}dx=\frac{x}{3}e^{3x}-\frac{1}{3}\int e^{3x}dx=\frac{x}{3}e^{3x}-\frac{1}{9}e^{3x}\)
Thế kết quả thu được vào (a) ta có :
\(I_2=\frac{x^2}{3}e^{3x}-\frac{2}{3}\left(\frac{x}{3}e^{3x}-\frac{1}{9}e^{3x}\right)+C=\frac{e^{3x}}{27}\left(9x^2-6x+2\right)+C\)
a) Áp dụng phương pháp tìm nguyên hàm từng phần:
Đặt u= ln(1+x)
dv= xdx
=> ,
Ta có: ∫xln(1+x)dx =
=
b) Cách 1: Tìm nguyên hàm từng phần hai lần:
Đặt u= (x2+2x -1) và dv=exdx
Suy ra du = (2x+2)dx, v = ex
. Khi đó:
∫(x2+2x - 1)exdx = (x2+2x - 1)exdx - ∫(2x+2)exdx
Đặt : u=2x+2; dv=exdx
=> du = 2dx ;v=ex
Khi đó:∫(2x+2)exdx = (2x+2)ex - 2∫exdx = ex(2x+2) – 2ex+C
Vậy
∫(x2+2x+1)exdx = ex(x2-1) + C
Cách 2: HD: Ta tìm ∫(x2-1)exdx. Đặt u = x2-1 và dv=exdx.
Đáp số : ex(x2-1) + C
c) Đáp số:
HD: Đặt u=x ; dv = sin(2x+1)dx
d) Đáp số : (1-x)sinx - cosx +C.
HD: Đặt u = 1 - x ;dv = cosxdx
a) Ta thực hiện phép đổi biến :
\(1+\sqrt{x}=t\) ; \(x=\left(t-1\right)^2\) ; \(dx=2\left(t-1\right)dt\)
Khi đó \(\left(1+\sqrt{x}\right)^{10}dx=t^{10}.2\left(t-1\right)dt\)
tức là :
\(I_1=2\int\left(t^{11}-t^{10}\right)dt=2\int t^{11}dt-2\int t^{10}dt=2\left(\frac{t^{12}}{12}-\frac{t^{11}}{11}\right)+C\)
\(=\frac{1}{66}t^{11}\left(11t-12\right)+c\)
\(=\frac{1}{66}\left(1+\sqrt{x}\right)^{11}\left[11\sqrt{x}-1\right]+C\)
b) Đặt \(x^2+a=t\)
Ta có \(2xdx=dt\)
\(I_2=\frac{1}{2}\int\frac{dt}{\sqrt[3]{t}}=\frac{1}{2}\int t^{-\frac{1}{3}}dt=\frac{1}{2}.\frac{3}{2}t^{\frac{2}{3}}+C=\frac{3}{4}\sqrt[3]{\left(x^2+a\right)^2+C}\)
c) Đặt \(x^3=t\Rightarrow3x^2dx=dt\)
và \(I_3=\frac{1}{3}\int\frac{dt}{\sqrt{t^2+6}}=\frac{1}{3}\ln\left[t+\sqrt{t^2+6}\right]+C\)
\(=\frac{1}{3}\ln\left[x^2+\sqrt{x^2+6}\right]+C\)
a) Để ý đến công thức đổi cơ số logarit \(\log_2\left(1-3x\right)=\frac{1}{\ln2}\ln\left(1-3x\right)\)
Ta viết nguyên hàm đã cho dưới dạng \(I_1=\frac{1}{\ln2}\int\ln\left(1-3x\right)dx\)
Đặt \(u=\ln\left(1-3x\right)\) , \(dv=dx\)
Khi đó \(du=\frac{-3}{1-3x}dx\), \(v=x\)
Do đó :
\(I_1=\frac{1}{\ln2}\left[x\ln\left(1-3x\right)+3\int\frac{x}{1-3x}dx\right]\)
\(=\frac{1}{\ln2}\left[x\ln\left(1-3x\right)+3\int\frac{1}{3}\left(-1+\frac{1}{1-3x}\right)dx\right]\)
\(=\frac{1}{\ln2}\left[x\ln\left(1-3x\right)-\int dx+\frac{dx}{1-3x}\right]\)
\(=\frac{1}{\ln2}\left[\left(x-\frac{1}{3}\right)\ln\left(1-3x\right)-x\right]+C\)
b) Đặt \(u=\left(\ln x\right)^2\) , \(dv=\left(2x-3\right)dx\)
Khi đó \(du=2\ln x\frac{dx}{x}\) , \(v=x^2-3x\)
Do đó
\(I_2=\left(x^2-3x\right)\left(\ln x\right)^2-2\int\left(x-3\right)\ln xdx\)
\(\int\left(x-3\right)\ln xdx=I_2\)
Ta tính \(I_2\) Ta tìm nguyên hàm bằng cách lấy nguyên hàm từng phàn một làn nữa và thu được.
\(I_2=\left(\frac{1}{2}x^2-3x\right)\ln x-\int\left(\frac{1}{2}x-3\right)dx=\frac{1}{2}\left(x^2-6x\right)\ln x-\frac{1}{4}x^2+3x\)
Từ đó suy ra \(I_2=\left(x^2-3x\right)\left(\ln x\right)^2-\left(x^2-6x\right)\ln x+\frac{1}{2}x^2-6x+C\)
c) Đặt \(u=\ln x\) , \(dv=\left(4x^2+6x-7\right)dx\)
khi đó \(du=\frac{dx}{x}\) , \(v=\int\left(4x^2+6x-7\right)dx=x^4+3x^2-7x\)
Do đó
\(I_3=\left(x^4+3x^2-7x\right)\ln x-\int\frac{x^4+3x^2-7x}{x}dx\)
\(=\left(x^4+3x^2-7x\right)\ln x-\left(\frac{x^4}{4}+\frac{3x^2}{2}-7x\right)+C\)