Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt \(\sqrt{2x-5}=t\) khi đó \(x=\frac{t^2+5}{2}\) , \(dx=tdt\)
Do vậy \(I_1=\int\frac{\frac{1}{4}\left(t^2+5\right)^2+3}{t^3}dt=\frac{1}{4}\int\frac{\left(t^4+10t^2+37\right)t}{t^3}dt\)
\(=\frac{1}{4}\int\left(t^2+10+\frac{37}{t^2}\right)dt=\frac{1}{4}\left(\frac{t^3}{3}+10t-\frac{37}{t}\right)+C\)
Trở về biến x, thu được :
\(I_1=\frac{1}{12}\sqrt{\left(2x-5\right)^3}+\frac{5}{2}\sqrt{2x-5}-\frac{37}{4\sqrt{2x-5}}+C\)
b) \(I_2=\frac{1}{3}\int\frac{d\left(\ln\left(3x-1\right)\right)}{\ln\left(3x-1\right)}=\frac{1}{3}\ln\left|\ln\left(3x-1\right)\right|+C\)
c) \(I_3=\int\frac{1+\frac{1}{x^2}}{\sqrt{x^2-7+\frac{1}{x^2}}}dx=\int\frac{d\left(x-\frac{1}{x}\right)}{\sqrt{\left(x-\frac{1}{2}\right)^2-5}}\)
Đặt \(x-\frac{1}{x}=t\)
\(\Rightarrow\) \(I_3=\int\frac{dt}{\sqrt{t^2-5}}=\ln\left|t+\sqrt{t^2-5}\right|+C\)
\(=\ln\left|x-\frac{1}{x}+\sqrt{x^2-7+\frac{1}{x^2}}\right|+C\)
a) Ta thực hiện phép đổi biến :
\(1+\sqrt{x}=t\) ; \(x=\left(t-1\right)^2\) ; \(dx=2\left(t-1\right)dt\)
Khi đó \(\left(1+\sqrt{x}\right)^{10}dx=t^{10}.2\left(t-1\right)dt\)
tức là :
\(I_1=2\int\left(t^{11}-t^{10}\right)dt=2\int t^{11}dt-2\int t^{10}dt=2\left(\frac{t^{12}}{12}-\frac{t^{11}}{11}\right)+C\)
\(=\frac{1}{66}t^{11}\left(11t-12\right)+c\)
\(=\frac{1}{66}\left(1+\sqrt{x}\right)^{11}\left[11\sqrt{x}-1\right]+C\)
b) Đặt \(x^2+a=t\)
Ta có \(2xdx=dt\)
\(I_2=\frac{1}{2}\int\frac{dt}{\sqrt[3]{t}}=\frac{1}{2}\int t^{-\frac{1}{3}}dt=\frac{1}{2}.\frac{3}{2}t^{\frac{2}{3}}+C=\frac{3}{4}\sqrt[3]{\left(x^2+a\right)^2+C}\)
c) Đặt \(x^3=t\Rightarrow3x^2dx=dt\)
và \(I_3=\frac{1}{3}\int\frac{dt}{\sqrt{t^2+6}}=\frac{1}{3}\ln\left[t+\sqrt{t^2+6}\right]+C\)
\(=\frac{1}{3}\ln\left[x^2+\sqrt{x^2+6}\right]+C\)
a) Đặt \(1+\ln x=t\) khi đó \(\frac{dx}{x}=dt\) và do đó
\(I_1=\int\sqrt{t}dt=\frac{2}{3}t^{\frac{3}{2}}+C=\frac{2}{3}\sqrt{\left(1+\ln x\right)^3}+C\)
b) Đặt \(\sqrt[4]{e^x+1}=t\) khi đó \(e^x+1=t^4\Rightarrow e^x=t^4-1\) và \(e^xdx=4t^3dt\) , \(e^{2x}dx=e^x.e^xdx=\left(t^4-1\right)4t^3dt\)
Do đó :
\(I_2=4\int\frac{t^3\left(t^4-1\right)}{t}dt=4\int\left(t^6-t^2\right)dt=4\left[\frac{t^7}{7}-\frac{t^3}{3}\right]+C\)
\(=4\left[\frac{1}{7}\sqrt[4]{\left(e^x+1\right)^7}-\frac{1}{3}\sqrt[4]{\left(e^x+1\right)^3}\right]+C\)
c) Lưu ý rằng \(x^2dx=\frac{1}{3}d\left(x^3+C\right)\) do đó :
\(I_3=\int x^2e^{x^{3+6}dx}=\frac{1}{3}\int e^{x^{3+6}}d\left(x^3+6\right)=\frac{1}{3}e^{x^{3+6}}+C\)
Đối với cả ba nguyên hàm đã cho, ta sẽ áp dụng liên tiếp hai làn lấy nguyên hàm từng phần và trong hai lần việc chọn hàm \(u=u\left(x\right)\) là tùy ý ( còn \(dv\) là phần còn lại của biểu thức dưới dấu nguyên hàm. Sau phép lấy nguyên hàm từng phần kép đó ta sẽ thu được một phương trình bậc nhất với ẩn là nguyên hàm cần tìm
a) Đặt \(u=e^{2x}\) ,\(dv=\sin3xdx\)
Từ đó \(du=2e^{2x}dx\) , \(v=\int\sin3xdx=-\frac{1}{3}\cos3xdx\) Do đó :
\(I_1=-\frac{1}{3}e^{2x}\cos3x+\frac{2}{3}\int e^{2x}\cos3xdx\)
\(=-\frac{1}{3}e^{2x}\cos3x+\frac{2}{3}.I'_1\)\(I'_1=\int e^{2x}\cos3xdx\)
Ta áp dụng công thức lấy nguyên hàm từng phần
Đặt \(u=e^{2x}\) ; \(dv=\cos3xdx\) Khi đó \(du=2^{2x}dx\); \(v=\frac{1}{3}\sin2x\)
Do đó \(I'_1=\frac{1}{3}e^{2x}\sin3x-\frac{2}{3}\int e^{2x}\sin3xdx\) Như vậy :
\(I_1=-\frac{1}{3}e^{2x}\cos3x+\frac{2}{9}e^{2x}\sin3x-\frac{4}{9}\int e^{2x}\sin3xdx\)
\(I_1=\int e^{2x}\sin3xdx\)
Tức là \(I_1=-\frac{1}{3}e^{2x}\cos3x+\frac{2}{9}\sin3x-\frac{4}{9}I_1\)
Ta có \(I_1=\frac{3}{13}e^{2x}\left(\frac{2}{3}\sin3x-\cos3x\right)+C\)
b) Đặt \(u=e^{-x}\) ; \(dv=\cos\frac{x}{2}dx\)
Từ đó :
\(du=-e^{-x}dx\) ; \(v=\int\cos\frac{x}{2}dx=2\int\cos\frac{x}{2}d\left(\frac{x}{2}\right)=2\sin\frac{x}{2}\)
Do đó :
\(I_2=2e^{-x}\sin\frac{x}{2}+2\int e^{-x}\sin\frac{x}{2}dx\) (b)
\(\int e^{-x}\sin\frac{x}{2}dx=I'_2\)
Ta cần tính \(I'_2\) Đặt \(u=e^{-x}\) ; \(dv=\sin\frac{x}{2}dx\)
Từ đó :
\(du=-e^{-x}dx\) ; \(v=\int\sin\frac{x}{2}dx=-2\cos\frac{x}{2}\)
Do đó :
\(I'_2=-2e^{-x}\cos\frac{x}{2}-2\int e^{-x}\cos\frac{x}{2}dx\)
\(=-2e^{-x}\cos\frac{x}{2}-2I_2\)
Thế \(I'_2\) vào (b) ta thu được phương trình bậc nhất với ẩn là \(I_2\)
\(I_2=2e^{-x}\sin\frac{x}{2}+2\left[-2e^{-x}\cos\frac{x}{2}-2I_2\right]\)
hay là
\(5I_2=2e^{-x}\sin\frac{x}{2}-4e^{-x}\cos\frac{x}{2}\) \(\Rightarrow\) \(I_2=\frac{2}{5}e^{-x}\left(\sin\frac{x}{2}-2\cos\frac{x}{2}\right)+C\)
Không phải tất cả các câu đều dùng nguyên hàm từng phần được đâu nhé, 1 số câu phải dùng đổi biến, đặc biệt những câu liên quan đến căn thức thì đừng dại mà nguyên hàm từng phần (vì càng nguyên hàm từng phần biểu thức nó càng phình to ra chứ không thu gọn lại, vĩnh viễn không ra kết quả đâu)
a/ \(I=\int\frac{9x^2}{\sqrt{1-x^3}}dx\)
Đặt \(u=\sqrt{1-x^3}\Rightarrow u^2=1-x^3\Rightarrow2u.du=-3x^2dx\)
\(\Rightarrow9x^2dx=-6udu\)
\(\Rightarrow I=\int\frac{-6u.du}{u}=-6\int du=-6u+C=-6\sqrt{1-x^3}+C\)
b/ Đặt \(u=1+\sqrt{x}\Rightarrow du=\frac{dx}{2\sqrt{x}}\Rightarrow2du=\frac{dx}{\sqrt{x}}\)
\(\Rightarrow I=\int\frac{2du}{u^3}=2\int u^{-3}du=-u^{-2}+C=-\frac{1}{u^2}+C=-\frac{1}{\left(1+\sqrt{x}\right)^2}+C\)
c/ Đặt \(u=\sqrt{2x+3}\Rightarrow u^2=2x\Rightarrow\left\{{}\begin{matrix}x=\frac{u^2}{2}\\dx=u.du\end{matrix}\right.\)
\(\Rightarrow I=\int\frac{u^2.u.du}{2u}=\frac{1}{2}\int u^2du=\frac{1}{6}u^3+C=\frac{1}{6}\sqrt{\left(2x+3\right)^3}+C\)
d/ Đặt \(u=\sqrt{1+e^x}\Rightarrow u^2-1=e^x\Rightarrow2u.du=e^xdx\)
\(\Rightarrow I=\int\frac{\left(u^2-1\right).2u.du}{u}=2\int\left(u^2-1\right)du=\frac{2}{3}u^3-2u+C\)
\(=\frac{2}{3}\sqrt{\left(1+e^x\right)^2}-2\sqrt{1+e^x}+C\)
e/ Đặt \(u=\sqrt[3]{1+lnx}\Rightarrow u^3=1+lnx\Rightarrow3u^2du=\frac{dx}{x}\)
\(\Rightarrow I=\int u.3u^2du=3\int u^3du=\frac{3}{4}u^4+C=\frac{3}{4}\sqrt[3]{\left(1+lnx\right)^4}+C\)
f/ \(I=\int cosx.sin^3xdx\)
Đặt \(u=sinx\Rightarrow du=cosxdx\)
\(\Rightarrow I=\int u^3du=\frac{1}{4}u^4+C=\frac{1}{4}sin^4x+C\)
a) Đặt \(u=x^2\); \(dv=2^xdx\). Khi đó \(du=2xdx\) ; \(v=\int2^xdx=\frac{2^x}{\ln2}\) và \(I_1=x^2\frac{2^x}{\ln2}-\frac{2}{\ln2}\int x2^xdx\)
Lại áp dụng phép lấy nguyên hàm từng phần cho tích phân ở vế phải bằng cách đặt :
\(u=x\) ; \(dv=2^xdx\) và thu được \(du=dx\) ; \(v=\frac{2^x}{\ln2}\) Do đó
\(I_1=x^2\frac{2^x}{\ln_{ }2}-\frac{2}{\ln2}\left[x\frac{2^x}{\ln2}-\frac{1}{\ln2}\int2^xdx\right]\)
= \(x^2\frac{2^x}{\ln_{ }2}-\frac{2}{\ln2}\left[x\frac{2^x}{\ln2}-\frac{2^x}{\ln^22}\right]+C\) = \(\left(x^2-\frac{2}{\ln2}x+\frac{2}{\ln^22}\right)\frac{2^x}{\ln2}+C\)
b) Đặt \(u=x^2\); \(dv=e^{3x}dx\)
Khi đó \(du=2xdx\) ; \(v=\int e^{3x}dx=\frac{1}{3}\int e^{3x}d\left(3x\right)=\frac{1}{3}e^{ex}\)
Do đó:
\(I_2=\frac{x^2}{3}e^{3x}-\frac{1}{3}\int xe^{3x}dx\) (a)
Lại áp dụng phép lấy nguyên hàm từng phần cho nguyên hàm ở vế phải. Ta đặt \(u=x\) ; \(dv=e^{3x}dx\)
Khi đó \(du=dx\) ; \(v=\int e^{3x}dx=\frac{1}{3}e^{3x}\) và
\(\int xe^{ex}dx=\frac{x}{3}e^{3x}-\frac{1}{3}\int e^{3x}dx=\frac{x}{3}e^{3x}-\frac{1}{9}e^{3x}\)
Thế kết quả thu được vào (a) ta có :
\(I_2=\frac{x^2}{3}e^{3x}-\frac{2}{3}\left(\frac{x}{3}e^{3x}-\frac{1}{9}e^{3x}\right)+C=\frac{e^{3x}}{27}\left(9x^2-6x+2\right)+C\)
1) Đặt \(2+lnx=t\Leftrightarrow x=e^{t-2}\Rightarrow dx=e^{t-2}dt\)
\(I_1=\int\left(\frac{t-2}{t}\right)^2\cdot e^{t-2}\cdot dt=\int\left(1-\frac{4}{t}+\frac{4}{t^2}\right)e^{t-2}dt\\ =\int e^{t-2}dt-4\int\frac{e^{t-2}}{t}dt+4\int\frac{e^{t-2}}{t^2}dt\)
Có:
\(4\int\frac{e^{t-2}}{t^2}dt=-4\int e^{t-2}\cdot d\left(\frac{1}{t}\right)=-\frac{4\cdot e^{t-2}}{t}+4\int\frac{e^{t-2}}{t}dt\\ \Leftrightarrow4\int\frac{e^{t-2}}{t^2}dt-4\int\frac{e^{t-2}}{t^{ }}dt=-\frac{4\cdot e^{t-2}}{t}\)
Vậy \(I_1=\int e^{t-2}dt-\frac{4\cdot e^{t-2}}{t}=e^{t-2}-\frac{4e^{t-2}}{t}+C\)
3) Đặt \(t=\sqrt{1+\sqrt[3]{x^2}}\Rightarrow t^2-1=\sqrt[3]{x^2}\Leftrightarrow x^2=\left(t^2-1\right)^3\)
\(d\left(x^2\right)=d\left[\left(t^2-1\right)^3\right]\Leftrightarrow2x\cdot dx=6t\left(t^2-1\right)^2\cdot dt\)
\(I_3=\int\frac{3t\left(t^2-1\right)^2}{t}dt=3\int\left(t^4-2t^2+1\right)dt=...\)
a) Dùng phương pháp hữu tỉ hóa "Nếu \(f\left(x\right)=R\left(e^x\right)\Rightarrow t=e^x\)" ta có \(e^x=t\Rightarrow x=\ln t,dx=\frac{dt}{t}\)
Khi đó \(I_1=\int\frac{t^3}{t+2}.\frac{dt}{t}=\int\frac{t^2}{t+2}dt=\int\left(t-2+\frac{4}{t+2}\right)dt\)
\(=\frac{1}{2}t^2-2t+4\ln\left(t+2\right)+C=\frac{1}{2}e^{2x}-2e^x+4\ln\left(e^x+2\right)+C\)
b) Hàm dưới dấu nguyên hàm
\(f\left(x\right)=\frac{\sqrt{x}}{x+\sqrt[3]{x^2}}=R\left(x;x^{\frac{1}{2}},x^{\frac{2}{3}}\right)\)
q=BCNN(2;3)=6
Ta thực hiện phép hữu tỉ hóa theo :
"Nếu \(f\left(x\right)=R\left(x:\left(ã+b\right);\left(ax+b\right)^{r2},....\right),r_k=\frac{P_k}{q_k}\in Q,k=1,2,...,m\Rightarrow t=\left(ax+b\right)^{\frac{1}{q}}\),q=BCNN \(\left(q_1,q_2,...,q_m\right)\)"
=> \(t=x^{\frac{1}{6}}\Rightarrow x=t^{6,}dx=6t^5dt\)
Khi đó nguyên hàm đã cho trở thành :
\(I_2=\int\frac{t^3}{t^6-t^4}6t^{5dt}=\int\frac{6t^4}{t^2-1}dt=6\int\left(t^2+1+\frac{1}{t^2-1}\right)dt\)
\(=6\int\left(t^2+1\right)dt+2\int\frac{dt}{\left(t-1\right)\left(t+1\right)}=2t^3+6t+3\int\frac{dt}{t-1}-3\int\frac{dt}{t+1}\)
\(=2t^2+6t+3\ln\left|t-1\right|-3\ln\left|t+1\right|+C=2\sqrt{x}+6\sqrt[6]{x}+3\ln\left|\frac{\sqrt[6]{x-1}}{\sqrt[6]{x+1}}\right|+C\)
c) Hàm dưới dấu nguyên hàm có dạng :
\(f\left(x\right)=R\left(x;\left(\frac{x+1}{x-1}\right)^{\frac{2}{3}};\left(\frac{x+1}{x-1}\right)^{\frac{5}{6}}\right)\)
q=BCNN (3;6)=6
Ta thực hiện phép hữu tỉ hóa được
\(t=\left(\frac{x+1}{x-1}\right)^{\frac{1}{6}}\Rightarrow x=\frac{t^6+1}{t^6-1},dx=\frac{-12t^5}{\left(t^6-1\right)^2}dt\)
Khi đó hàm dưới dấu nguyên hàm trở thành
\(R\left(t\right)=\frac{1}{\left(\frac{t^6+1}{t^6-1}\right)^2-1}\left[t^4-t^5\right]=\frac{\left(t^6-1\right)^2}{4t^6}\left(t^4-t^5\right)\)
Do đó :
\(I_3=\int\frac{\left(t^6-1\right)^2}{4t^6}\left(t^4-t^5\right).\frac{-12t^5}{\left(t^6-1\right)}dt=3\int\left(t^4-t^3\right)dt\)
\(=\frac{5}{3}t^5-\frac{3}{4}t^4+C=\frac{3}{5}\sqrt[6]{\left(\frac{x+1}{x-1}\right)^5}-\frac{3}{4}\sqrt[3]{\left(\frac{x+1}{x-1}\right)^2}+C\)