Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
các bạn ơi giải bài này đi mình cần gấp ai giả được minh cho 1 thích nhé
\(x^2+x+3=y^2\)
\(\Leftrightarrow4x^2+4x+12=4y^2\)
\(\Leftrightarrow\left(2x+1\right)^2-4y^2=-11\)
\(\Leftrightarrow\left(2x+1-2y\right)\left(2x+1+2y\right)=-11\)
Lập bảng ra
\(\Leftrightarrow\left(x^4+x^2+\frac{1}{4}\right)-\left(y^2-y+\frac{1}{4}\right)+10=0\)
\(\Leftrightarrow\left(x^2-y+1\right)\left(x^2+y\right)=-10\)
đến đây cậu lập bảng là ra nhé
Ta có: \(x^2+x=x^2y-xy+y\)
\(\Leftrightarrow x^2+x-x^2y+xy-y=0\)
\(\Leftrightarrow x^2\left(1-y\right)+x\left(1+y\right)-y=0\)
\(\Delta=\left(1+y\right)^2+4y\left(1-y\right)\)
\(=y^2+2y+1+4y-4y^2=-3y^2+6y+1\)
Để PT có nghiệm thì \(\Delta\ge0\Leftrightarrow-3y^2+6y+1\ge0\)
\(\Rightarrow\frac{3+2\sqrt{3}}{3}\ge y\ge\frac{3-2\sqrt{3}}{3}\Leftrightarrow2\ge x\ge0\)
Vì y nguyên nên ta xét các TH sau:
TH1: \(y=0\Rightarrow x^2+x=0\Leftrightarrow x\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}\left(tm\right)}\)
TH2: \(y=1\Rightarrow x^2+x=x^2-x+1\Leftrightarrow2x=1\Rightarrow x=\frac{1}{2}\left(ktm\right)\)
TH3: \(y=2\Rightarrow x^2+x=2x^2-2x+2\Leftrightarrow x^2-3x+2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
Vậy ta có 4 cặp số (x;y) thỏa mãn ...
HD
giải hệ phương trình nghiệm nguyên: (k-3)(3+k)=2x
=> k=..
x=...
y=+-3k-x
x2+(x+y)2=(x+9)2
x+x+y=x+9
2x+y=x+9
2x+y-x-9=0
x+y+9=0
xong het pt