K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
CN
0
CN
0
CN
0
HL
1
14 tháng 7 2017
1. \(3x^2\left(ax^2-2bx-3c\right)=3x^2\left(x^2-4x+27\right)\)
\(\Rightarrow\hept{\begin{cases}a=1\\-2b=-4\\-3c=27\end{cases}\Rightarrow\hept{\begin{cases}a=1\\b=2\\c=-9\end{cases}}}\)
2. \(\left(x^2+cx+2\right)\left(ax+b\right)=x^3+x^2-2\)
\(\Rightarrow ax^3+bx^2+acx^2+bcx+2ax+2b=x^3+x^2-2\)
\(\Rightarrow ax^3+\left(b+ac\right)x^2+\left(bc+2a\right)x+2b=x^3+x^2-2\)
\(\Rightarrow\hept{\begin{cases}a=1\\b+ac=1\\2b=-2\end{cases}\Rightarrow\hept{\begin{cases}a=1\\b+ac=1\\b=-1\end{cases}\Rightarrow}\hept{\begin{cases}a=1\\b=-1\\c=2\end{cases}}}\)
Câu còn lại tương tự
Đề sai mình sửa thành:\(3x^2\left(ax^2-abcx-c\right)=3x^4-12x^3+27x^2\)
<=>\(3ax^4-3abcx^3-3cx^2=3x^4-12x^3+27x^2\)
Để PT nghiệm đúng với mọi x thì
\(\left\{{}\begin{matrix}3a=3\\-3abc=-12\\-3c=27\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}a=1\\b=-\dfrac{9}{4}\\c=-9\end{matrix}\right.\)