Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Hàm số\(y = 4x - 7\) là hàm số bậc nhất vì hàm số có dạng \(y = ax + b\)với \(a,b\) là các số cho trước và \(a \ne 0\). Hệ số \(a = 4;b = - 7\).
- Hàm số \(y = {x^2}\) không là hàm số bậc nhất vì hàm số không có dạng \(y = ax + b\)với \(a,b\) là các số cho trước và \(a \ne 0\).
- Hàm số \(y = - 6x - 4\)là hàm số bậc nhất vì hàm số có dạng \(y = ax + b\)với \(a,b\) là các số cho trước và \(a \ne 0\). Hệ số \(a = - 6;b = - 4\).
- Hàm số \(y = 4x\)là hàm số bậc nhất vì hàm số có dạng \(y = ax + b\)với \(a,b\) là các số cho trước và \(a \ne 0\). Hệ số \(a = 4;b = 0\).
- Hàm số \(y = \dfrac{3}{x}\) không là hàm số bậc nhất vì hàm số không có dạng \(y = ax + b\)với \(a,b\) là các số cho trước và \(a \ne 0\).
- Hàm số \(s = 5v + 8\) là hàm số bậc nhất vì hàm số có dạng \(s = av + b\)với \(a,b\) là các số cho trước và \(a \ne 0\). Hệ số \(a = 5;b = 8\).
- Hàm số \(m = 30n - 25\) là hàm số bậc nhất vì hàm số có dạng \(m = an + b\)với \(a,b\) là các số cho trước và \(a \ne 0\). Hệ số \(a = 30;b = - 25\).
Câu 1: B
Câu 2: D
Bài 1: Các hàm số bậc nhất là
a: y=3x-2
a=3; b=-2
d: y=-2(x+5)
=-2x-10
a=-2; b=-10
e: \(y=1+\dfrac{x}{2}\)
\(a=\dfrac{1}{2};b=1\)
bạn ơi câu e minh viết là 1+x phần 2 bạn xem lai nha
câud mình viết thiếu là y = -2. (x+5) -4
Các hàm số là hàm số bậc nhất:
a) y = 3x - 2
b) y = -2x
d) y = 3(x - 1)
Bài 2:
a: Thay x=1 và y=1 vào y=ax+5, ta được:
\(a\cdot1+5=1\)
=>a+5=1
=>a=-4
b: a=-4 nên y=-4x+5
x | -2 | -1 | 0 | 1/2 | -3 |
y=-4x+5 | 13 | 9 | 5 | 3 | -7 |
Bài 1:
a: \(y=-2\left(x+5\right)-4\)
\(=-2x-10-4\)
=-2x-14
a=-2; b=-14
b: \(y=\dfrac{1+x}{2}\)
=>\(y=\dfrac{1}{2}x+\dfrac{1}{2}\)
=>\(a=\dfrac{1}{2};b=\dfrac{1}{2}\)
Thay x=4 vào \(y=f\left(x\right)=\sqrt{x}\), ta được
\(f\left(4\right)=\sqrt{4}=2\)
=>A(4;2) thuộc đồ thị hàm số \(y=f\left(x\right)=\sqrt{x}\)
Thay \(x=2\) vào \(y=f\left(x\right)=\sqrt{x}\), ta được;
\(f\left(2\right)=\sqrt{2}>1\)
=>B(2;1) không thuộc đồ thị hàm số \(y=f\left(x\right)=\sqrt{x}\)
Thay \(x=8\) vào \(y=\sqrt{x}\), ta được:
\(y=\sqrt{8}=2\sqrt{2}\)
=>\(C\left(8;2\sqrt{2}\right)\) thuộc đồ thị hàm số \(y=\sqrt{x}\)
Thay \(x=4-2\sqrt{3}\) vào \(y=\sqrt{x}\), ta được:
\(y=\sqrt{4-2\sqrt{3}}=\sqrt{3-2\cdot\sqrt{3}\cdot1+1}\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}=\left|\sqrt{3}-1\right|=\sqrt{3}-1< >1-\sqrt{3}\)
=>\(D\left(4-2\sqrt{3};1-\sqrt{3}\right)\) không thuộc đồ thị hàm số \(y=f\left(x\right)=\sqrt{x}\)
Thay \(x=6+2\sqrt{5}\) vào \(y=f\left(x\right)=\sqrt{x}\), ta được:
\(f\left(6+2\sqrt{5}\right)=\sqrt{6+2\sqrt{5}}=\sqrt{\left(\sqrt{5}+1\right)^2}\)
\(=\left|\sqrt{5}+1\right|=\sqrt{5}+1\)
vậy: \(E\left(6+2\sqrt{5};1+\sqrt{5}\right)\) thuộc đồ thị hàm số \(y=f\left(x\right)=\sqrt{x}\)
Đáp án đúng là D
- Đồ thị hàm số \(y = \dfrac{1}{3}x + 2\) là đường thẳng có hệ số góc là \(a = \dfrac{1}{3}\).
- Đồ thị hàm số \(y = - \dfrac{1}{3}x + 2\) là đường thẳng có hệ số góc là \(a = - \dfrac{1}{3}\).
- Đồ thị hàm số \(y = - 3x + 2\) là đường thẳng có hệ số góc là \(a = - 3\).
Vì cả ba đường thẳng đều có hệ số góc khác nhau nên chúng cắt nhau.
- Đồ thị hàm số \(y = \dfrac{1}{3}x + 2\) cắt trục tung tại điểm \(A\left( {0;2} \right)\).
- Đồ thị hàm số \(y = - \dfrac{1}{3}x + 2\) cắt trục tung tại điểm \(A\left( {0;2} \right)\)
- Đồ thị hàm số \(y = - 3x + 2\) cắt trục tung tại điểm \(A\left( {0;2} \right)\)
Do đó điểm \(A\left( {0;2} \right)\) là giao điểm của ba đồ thị hàm số.
Vậy đồ thị của các hàm số trên là các đường thẳng cắt nhau tại một điểm.
a) Phương trình \(7x + \dfrac{4}{7} = 0\) là phương trình bậc nhất một ẩn vì có dạng \(ax + b = 0\) với \(a\) và \(b\) là các hệ số đã cho và \(a \ne 0\), \(x\) là ẩn số.
Khi đó, \(a = 7;b = \dfrac{4}{7}\).
b) \(\dfrac{3}{2}y - 5 = 4\)
\(\dfrac{3}{2}y - 5 - 4 = 0\)
\(\dfrac{3}{2}y - 9 = 0\)
Phương trình \(\dfrac{3}{2}y - 9 = 0\) là phương trình bậc nhất một ẩn vì có dạng \(ay + b = 0\) với \(a\) và \(b\) là các hệ số đã cho và \(a \ne 0\), \(y\) là ẩn số.
Khi đó, \(a = \dfrac{3}{2};b = - 9\)
c) Phương trình \(0t + 6 = 0\) không là phương trình bậc nhất một ẩn.
Mặc dù phương trình đã cho có dạng \(at + b = 0\) với \(a\) và \(b\) là các hệ số đã cho nhưng \(a = 0\).
d) Phương trình \({x^2} + 3 = 0\) không là phương trình bậc nhất một ẩn vì không có dạng \(ax + b = 0\) với \(a\) và \(b\) là các hệ số đã cho và \(a \ne 0\), \(x\) là ẩn số (do có \({x^2}\)).
a, Không phải là hàm số bậc nhất do hệ số bậc nhất bằng 0
b, Là hàm số bậc nhất
a=-3; b=1
c, là hàm số bậc nhất
a= -0,6 và b=0
d, là hàm số bậc nhất
a=\(\sqrt{2}\) và b= \(3-\sqrt{2}\)
e, không là hàm số bậc nhất (nó là hàm số bậc 2)
Các hàm số bậc nhất :
- Câu b : \(y=1-3x\left(a=-3;b=1\right)\)
- Câu c : \(y=-0,6x\left(a=-0,6;b=0\right)\)
- Câu d : \(y=\sqrt[]{2}\left(x-1\right)+3=\sqrt[]{2}x+3-\sqrt[]{2}\left(a=\sqrt[]{2};b=3-\sqrt[]{2}\right)\)
a) Hàm số \(y = 4x + 2\) là hàm số bậc nhất vì có dạng \(y = ax + b\) với\(a,b\) là các số cho trước và \(a \ne 0\). Ta có, \(a = 4;b = 2\).
b) Hàm số \(y = 5 - 3x = - 3x + 5\) là hàm số bậc nhất vì có dạng \(y = ax + b\) với\(a,b\) là các số cho trước và \(a \ne 0\). Ta có, \(a = - 3;b = 5\).
c) Hàm số \(y = 2 + {x^2}\) không phải là hàm số bậc nhất vì không có dạng \(y = ax + b\) với\(a,b\) là các số cho trước và \(a \ne 0\).
d) Hàm số \(y = - 0,2x\) là hàm số bậc nhất vì có dạng \(y = ax + b\) với\(a,b\) là các số cho trước và \(a \ne 0\). Ta có, \(a = - 0,2;b = 0\).
e) Hàm số \(y = \sqrt 5 x - 1\) là hàm số bậc nhất vì có dạng \(y = ax + b\) với\(a,b\) là các số cho trước và \(a \ne 0\). Ta có, \(a = \sqrt 5 ;b = - 1\).
a) \(y=4x+2\Rightarrow\left\{{}\begin{matrix}a=4\\b=2\end{matrix}\right.\)
b) \(y=5-3x\Rightarrow\left\{{}\begin{matrix}a=-2\\b=5\end{matrix}\right.\)
c) \(y=2+x^2\) không phải hàm số bậc nhất.
d) \(y=0,2x\Rightarrow\left\{{}\begin{matrix}a=-0,2\\b=0\end{matrix}\right.\)
e) \(y=\sqrt[]{5}x-1\Rightarrow\left\{{}\begin{matrix}a=\sqrt[]{5}\\b=-1\end{matrix}\right.\)