Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=x^2+4xy+2y^2-22y+173\)
\(A=\left(x^2+2xy+y^2\right)+\left(y^2-22y+121\right)+52\)
\(A=\left(x+y\right)^2+\left(y-11\right)^2+52\)
\(\left(x+y\right)^2\ge0;\left(y-11\right)^2\ge0\) với mọi x;y => \(A=\left(x+y\right)^2+\left(y-11\right)^2+52\ge52\)
=>minA=52 <=> \(\hept{\begin{cases}\left(x+y\right)^2=0\\\left(y-11\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=0\\y-11=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-11\\y=11\end{cases}}\)
Vậy min=52 khi x=-11 và y=11
P/s câu sau nha
9xy+3x+3y=51 (x, y thuộc Z; x, y>0)
<=> 9xy+3x+3y+1=52
<=> 3x(3y+1)+(3y+1)=52
<=> (3y+1)(3x+1)=52=13.4=26.2=1.52
Vif x, y >0 => (3y+1)>1 và (3x+1) >1
TH1: 3y+1 =13 và 3x+1=4 => y=4 và x=1 (nhận)
TH2: 3y +1 =26 và 3x+1=2 => y=25/3 và x=1/3 (loại)
Với x, y có thể đổi chỗ cho nhau trong phương trình trên.
Vậy (x;y)=(1;4) và (4;1)
a) Biến đổi đẳng thức đã cho về dạng ( x = y + 1 ) ( x - y - 1 ) = 12 sau đó bạn lập luận x+y+1>x-y-1 và x + y + 1 và x - y - 1 là các ước của 12 rồi bạn tự làm tiếp các trường hợp
Nguyễn Hải An thì cả hai vế đều nguyên dương thì nhân với nhau sẽ là một số dương đó