Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiên:2x+1 khác 0 nên x khác -1/2. Ta có: A=\(\frac{6x+3-7}{2x+1}=3+\frac{7}{2x+1}\) rồi suy ra 2x+1= 7, -7, 1, -1. Vậy x=3,-4,0,-1.
ĐỂ BIỂU THỨC \(A=\frac{6x-4}{2x+1}\)NHẬN GIÁ TRỊ NGUYÊN
TA CÓ: \(A=\frac{6x-4}{2x+1}=\frac{6x+3-7}{2x+1}=\frac{3.\left(2x+1\right)-7}{2x+1}\)
\(=\frac{3.\left(2x+1\right)}{2x+1}-\frac{7}{2x+1}=3-\frac{7}{2x+1}\)
ĐỂ \(A\inℤ\)
\(\Rightarrow\frac{7}{2x+1}\inℤ\)
\(\Rightarrow7⋮2x+1\)
\(\Rightarrow2x+1\inƯ_{\left(7\right)}=\left(1;-1;7;-7\right)\)
NẾU \(2x+1=1\Rightarrow2x=0\Rightarrow x=0\left(TM\right)\)
\(2x+1=-1\Rightarrow2x=-2\Rightarrow x=-1\left(TM\right)\)
\(2x+1=7\Rightarrow2x=6\Rightarrow x=3\left(TM\right)\)
\(2x+1=-7\Rightarrow2x=-8\Rightarrow x=-4\left(TM\right)\)
VẬY X = ....................
CHÚC BN HỌC TỐT!!!!!!
Ta có :
\(A=\frac{6x-4}{2x+1}=\frac{6x+3-7}{2x+1}=\frac{3\left(2x+1\right)}{2x+1}-\frac{7}{2x+1}=3-\frac{7}{2x+1}\)
Để A là số nguyên hay nói cách khác thì \(7⋮\left(2n+1\right)\)\(\Rightarrow\)\(\left(2n+1\right)\inƯ\left(7\right)\)
Mà \(Ư\left(7\right)=\left\{1;-1;7;-7\right\}\)
Suy ra :
\(2x+1\) | \(1\) | \(-1\) | \(7\) | \(-7\) |
\(x\) | \(0\) | \(-1\) | \(3\) | \(-4\) |
Vậy \(x\in\left\{-4;-1;0;3\right\}\)
Chúc bạn học tốt ~
Để A đạt GTLN thì \(\frac{3}{4-x}\)phải đạt giá trị lớn nhất\(\Rightarrow\)4-x phải bé nhất và 4-x>0
\(\Rightarrow4-x=1\rightarrow x=3\)
thay vào ta đc A=3
B3
\(B=\frac{7-x}{4-x}=\frac{4-x+3}{4-x}=\frac{4-x}{4-x}+\frac{3}{4-x}\)\(=1+\frac{3}{4-x}\)
Để b đạt GTLn thì 3/4-x phải lớn nhất (làm tương tụ như bài 2 )
Vậy gtln của 3/4-x là 3 thay vào ta đc b=4
Lâm như bài 2 Gtln của\(\frac{3}{4-x}\)
B1\(\frac{4x-3}{2x+1}=\frac{4x+2-5}{2x+1}=\frac{2.\left(2x+1\right)-5}{2x+1}\)\(=\frac{2.\left(2x+1\right)}{2x+1}-\frac{5}{2x+1}=2-\frac{5}{2x+1}\)
VÌ A\(\varepsilon Z\),2\(\varepsilon Z\)\(\Rightarrow\)\(\frac{5}{2x+1}\varepsilon Z\)\(\rightarrow2x+1\varepsilonƯ\left(5\right)\)={1;-1;5;-5}
\(\Rightarrow\)x={0;-1;23}
Ta có : \(A=\frac{7-x}{2x-1}\)
=> \(2A=\frac{14-2x}{2x-1}=\frac{1-2x+13}{2x-1}=\frac{-\left(2x-1\right)+13}{2x-1}=-1+\frac{13}{2x-1}\)
Để 2A \(\inℤ\)
=> 13 \(⋮\)2x - 1
=> 2x - 1 \(\inƯ\left(13\right)\)
=> 2x - 1 \(\in\left\{1;-13;-1;13\right\}\)
=> \(2x\in\left\{2;-12;0;14\right\}\)
=> \(x\in\left\{1;-6;0;7\right\}\)
Thay x = 1 vào A => A = 6 (TM)
Thay x = -6 vào A => A = -1 (TM)
Thay x = 0 vào A => A = -7
Thay x = 7 vào A => A = 0
Vậy \(x\in\left\{1;-6;0;7\right\}\)thì A nguyên
a) Ta có: \(M=\frac{2x+5}{x+1}=\frac{2\left(x+1\right)+3}{x+1}=\frac{2x+2+3}{x+1}\)
Vì \(2x+2⋮\left(x+1\right)\Rightarrow3⋮\left(x+1\right)\)
Nên \(x+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow x=\left\{0;-2;2;-4\right\}\)
b) Tương tự
\(A=\frac{x^2+2x+5}{x+1}=\frac{\left(x^2+2x+1\right)+4}{x+1}=\frac{\left(x+1\right)^2+4}{x+1}=x+1+\frac{4}{x+1}\)
Để \(A=x+1+\frac{4}{x+1}\) là số nguyên <=> \(\frac{4}{x+1}\) là số nguyên
=> x + 1 \(\inƯ\left(4\right)\) = { - 4; - 2; - 1; 1; 2; 4 }
=> x = { - 5; - 3; - 2; 0; 1; 3 }
Vậy x = { - 5; - 3; - 2; 0; 1; 3 }
Để biểu thức A đạt giá trị nguyên thì phân số \(\frac{x^2+2x+5}{x+1}\)phải đạt giá trị nguyên.
\(\Rightarrow x^2+2x+5⋮x+1\)
\(\Rightarrow x.\left(x+1\right)+2x+5-x⋮x+1\)
\(\Rightarrow x+5⋮x+1\)
\(\Rightarrow\left(x+1\right)+4⋮x+1\)
\(\Rightarrow4⋮x+1\)
\(\Rightarrow x+1\inƯ\left(4\right)=\left\{-4;-2;-1;+1;+2;+4\right\}\)
\(\Rightarrow x\in\left\{-5;-3;-2;0;+1;+3\right\}\)
vậy \(x\in\left\{-5;-3;-2;0;+1;+3\right\}\)thì A đạt giá trị nguyên
Để B là số nguyên thì \(-2x+1⋮x+3\)
\(\Leftrightarrow x+3\in\left\{1;-1;7;-7\right\}\)
hay \(x\in\left\{-2;-4;4;-10\right\}\)
Để \(D=\frac{4}{\left(2x-3\right)^2+5}\) đạt gtln <=> \(\left(2x-3\right)^2+5\) đạt gtnn
Vì \(\left(2x-3\right)^2\ge0\)
\(\Rightarrow\left(2x-3\right)^2+5\ge5\) có gtnn là 5
Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\) => \(x=\frac{3}{2}\)
Vậy gtln của D là \(\frac{4}{5}\) tại \(x=\frac{3}{2}\)
Ta có : \(\frac{2x-1}{2x+3}=\frac{2x+3-4}{2x+3}=1-\frac{4}{2x+3}\)
Để \(\frac{2x-1}{2x+3}\in Z\) thì \(\frac{4}{2x+3}\in Z\)
Suy ra 4 chia hết cho 2x + 3
=> 2x + 3 thuộc Ư(4) = {-4;-2;-1;1;2;4}
=> 2x = {-7;-5;-4;-2;-1;1}
=> x = -1
cần lí giải rõ ràng hơn nữa