Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{3x-6\sqrt{x}+7}{2\sqrt{x}-2}+\frac{y-4\sqrt{x}+10}{\sqrt{y}-2}\)
\(=\frac{3\left(\sqrt{x}-1\right)}{2}+\frac{4}{2\left(\sqrt{x}-1\right)}+\left(\sqrt{y}-2\right)+\frac{6}{\sqrt{y-1}}\)
\(=\frac{3\left(\sqrt{x}-1\right)}{2}+\frac{3}{2\left(\sqrt{x}-1\right)}+\left(\sqrt{y}-2\right)+\frac{4}{\left(\sqrt{y}-2\right)}+\frac{4}{2\left(\sqrt{y}-2\right)}+\frac{1}{2\left(\sqrt{x}-1\right)}\)
\(\ge2.\sqrt{\frac{3}{2}.\frac{3}{2}}+2\sqrt{4}+\frac{\left(1+2\right)^2}{2\left(\sqrt{x}+\sqrt{y}-3\right)}\)
\(=3+4+\frac{3}{2}=\frac{17}{2}\)
Dấu "=" xảy ra <=> x = 4 và y = 16
\(P=\left(\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{4\sqrt{x}-3}{2\sqrt{x}-x}\right):\)\(\left(\frac{\sqrt{x}+2}{\sqrt{x}}-\frac{\sqrt{x}-4}{\sqrt{x}-2}\right)\)
\(=\left(\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{4\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)\(:\left(\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)-\sqrt{x}\left(\sqrt{x}-4\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)
\(=\frac{x-4\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-2\right)}:\frac{x-4-x+4\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}.\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{4\left(\sqrt{x}-1\right)}\)
\(=\frac{\sqrt{x}-3}{4}\)
\(b,\)Để \(P>0\Rightarrow\frac{\sqrt{x}-3}{4}>0\)
Mà \(4>0\Rightarrow\sqrt{x}-3>0\Rightarrow\sqrt{x}>3\Rightarrow x>9\)
\(c,\sqrt{P}_{min}=0\Rightarrow\frac{\sqrt{x}-3}{4}=0\)
\(\Leftrightarrow\sqrt{x}-3=0\Rightarrow\sqrt{x}=3\Rightarrow x=9\)
Trả lời:
\(P=\frac{2\sqrt{x}-1}{\sqrt{x}+1}\left(ĐK:x\ge0;x\ne1\right)\)
+) P > 0
\(\frac{2\sqrt{x}-1}{\sqrt{x}+1}>0\)
\(\Leftrightarrow2\sqrt{x}-1>0\) ( vì \(\sqrt{x}+1>0\) )
\(\Leftrightarrow2\sqrt{x}>1\)
\(\Leftrightarrow\sqrt{x}>\frac{1}{2}\)
\(\Leftrightarrow x>\frac{1}{4}\)
Vậy để P > 0 thì \(x>\frac{1}{4}\) và \(x\ne1\)
+) P < 1
\(\frac{2\sqrt{x}-1}{\sqrt{x}+1}< 1\)
\(\Leftrightarrow\frac{2\sqrt{x}-1}{\sqrt{x}+1}-1< 0\)
\(\Leftrightarrow\frac{2\sqrt{x}-1-\sqrt{x}-1}{\sqrt{x}+1}< 0\)
\(\Leftrightarrow\frac{\sqrt{x}-2}{\sqrt{x}+1}< 0\)
\(\Rightarrow\sqrt{x}-2< 0\)
\(\Leftrightarrow\sqrt{x}< 2\)
\(\Leftrightarrow x< 4\)
Vậy để P < 1 thì \(0\le x< 4\) và \(x\ne1\)
Vì x>0; y>0
Nên áp dụng BĐT Cô-si ta có: \(x+y\ge2\sqrt{xy}\)
\(\Rightarrow\)\(\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{x}.\frac{1}{y}}=2\sqrt{\frac{1}{xy}}\)
Mà \(\frac{1}{x}+\frac{1}{y}=\frac{1}{2}\)
Nên \(\frac{1}{2}\ge2.\frac{1}{\sqrt{xy}}\Rightarrow\frac{1}{4}\ge\frac{1}{\sqrt{xy}}\)
\(\Rightarrow4\le\sqrt{xy}\) (C)
Ta có: \(\sqrt{x}+\sqrt{y}\ge2\sqrt{\sqrt{xy}}\)
Thế (C) vào ta được: \(\sqrt{x}+\sqrt{y}\ge2\sqrt{4}=4\)
Dấu "=" xảy ra <=> x = y
Vậy AMin = 4 khi và chỉ khi x = y
\(\frac{1}{x}+\frac{1}{y}>=\frac{4}{x+y}\Rightarrow\frac{1}{2}>=\frac{4}{x+y}\Rightarrow x+y>=8\left(1\right)\)(bđt svacxo)
\(\frac{1}{x}+\frac{1}{y}>=2\sqrt{\frac{1}{x}\cdot\frac{1}{y}}=\frac{2}{\sqrt{xy}}\Rightarrow\frac{1}{2}>=\frac{2}{\sqrt{xy}}\Rightarrow\sqrt{xy}>=4\Rightarrow2\sqrt{xy}>=8\left(2\right)\)(bđt cosi)
từ \(\left(1\right);\left(2\right)\Rightarrow x+2\sqrt{xy}+y>=8+8=16\Rightarrow\left(\sqrt{x}+\sqrt{y}\right)^2>=16\)
mà \(\sqrt{x}>0;\sqrt{y}>0\Rightarrow\sqrt{x}+\sqrt{y}>=4\)
dấu = xảy ra khi x=y=4
vậy min A là 4 khi x=y=4
ĐKXĐ: \(x\ge1\)
\(x^2-25+2\sqrt{x-1}-\sqrt{2x+6}>0\Rightarrow\left(x-5\right)\left(x+5\right)+2\sqrt{x-1}-\sqrt{2x+6}>0\)
\(\Rightarrow\left(x-5\right)\left(x+5\right)+\frac{\left(2\sqrt{x-1}\right)^2-\left(\sqrt{2x+6}\right)^2}{2\sqrt{x-1}+\sqrt{2x+6}}>0\)
\(\Rightarrow\left(x-5\right)\left(x+5\right)+\frac{2\left(x-5\right)}{2\sqrt{x-1}+\sqrt{2x+6}}>0\)
\(\Rightarrow\left(x-5\right)\left[\left(x+5\right)+\frac{2}{2\sqrt{x-1}+\sqrt{2x+6}}\right]>0\)
mà \(\left(x+5\right)+\frac{2}{2\sqrt{x-1}+\sqrt{2x+6}}>0\) => x - 5 > 0 => x > 5
Vậy x > 5