K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2018

a,\(\sqrt{x^2-3}\le x^2-3\)

\(\Leftrightarrow x^2-3\le x^4-6x^2+9\)

\(\Leftrightarrow x^4-6x^2-x^2+12\ge0\)

\(\Leftrightarrow x^4-7x^2+12\ge0\)

\(\Leftrightarrow x^4-\frac{2.7}{2}.x^2+\frac{49}{4}-\frac{1}{4}\ge0\)

\(\Leftrightarrow\left(x^2-\frac{7}{2}\right)^2\ge\frac{1}{4}\)

\(\Leftrightarrow x^2-\frac{7}{2}\ge\frac{1}{2}\Leftrightarrow x^2\ge4\)

\(\Leftrightarrow x\le-2\)và \(x\ge2\)

KL:

b,\(\sqrt{x^2-6x+9}>x-6\)

\(\Leftrightarrow\sqrt{\left(x-3\right)^2}>x-6\)

\(\Leftrightarrow|x-3|>x-6\)

Với x\(\ge\)3  phương trình   <=>x-3>x-6  (luôn đúng)

Với x<3 phương trình <=> 3-x>x-6  <=>x<9/2 <=>x<4,5

KL:

21 tháng 8 2019

\(\text{a) ĐKXĐ: }x\ge\sqrt{3}\)

        \(\sqrt{x^2-3}\le x^2-3\)

\(\Leftrightarrow\left(\sqrt{x^2-3}\right)^2\le\left(x^2-3\right)^2\)

\(\Leftrightarrow x^2-3\le x^4-6x^2+9\)

\(\Leftrightarrow x^2-3-x^4+6x^2-9\le0\)

\(\Leftrightarrow-x^4+7x^2-12\le0\)

\(\Leftrightarrow-x^2+4x^2+3x^2-12\le0\)

\(\Leftrightarrow\left(-x^4+4x^2\right)+\left(3x^2-12\right)\le0\)

\(\Leftrightarrow-x^2\left(x^2-4\right)+3\left(x^2-4\right)\le0\)

\(\Leftrightarrow\left(x^2-4\right)\left(3-x^2\right)\le0\)

\(\text{Đến đây EZ rồi}\)

9 tháng 6 2019

a) ĐKXĐ : \(\orbr{\begin{cases}x\ge\sqrt{3}\\x\le-\sqrt{3}\end{cases}}\)

\(\sqrt{x^2-3}=x^2-3\)

\(\Leftrightarrow\sqrt{x^2-3}=\sqrt{x^2-3}\cdot\sqrt{x^2-3}\)

\(\Leftrightarrow\sqrt{x^2-3}-\sqrt{x^2-3}\cdot\sqrt{x^2-3}=0\)

\(\Leftrightarrow\sqrt{x^2-3}\left(1-\sqrt{x^2-3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x^2-3}=0\\\sqrt{x^2-3}=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-3=0\\x^2-3=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x\in\left\{\pm\sqrt{3}\right\}\\x\in\left\{\pm2\right\}\end{cases}}\)( thỏa mãn )

b) ĐKXĐ : \(x\le6\)

\(\sqrt{x^2-6x+9}=6-x\)

\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=6-x\)

\(\Leftrightarrow\left|x-3\right|=6-x\)

\(\Leftrightarrow\orbr{\begin{cases}x-3=6-x\\x-3=x-6\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x=9\\0x=-3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{9}{2}\\x\in\varnothing\end{cases}}\)( thỏa mãn )

1. Cho biểu thức:\(C=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+\:1}{\sqrt{x}+\:2}+\frac{\sqrt{x}+2}{1-\sqrt{x}}\)    a) Tìm điều kiện của x để C có nghĩa.    b) Rút gọn C.    c) Tìm các giá trị nguyên của x để giá trị C là số ngueyeenn.2. Cho biểu thức: \(A=x^2-3x\sqrt{y}+2y\)    a) Phân tích A thành nhân tử.    b) Tính giá trị của A khi: \(x=\frac{1}{\sqrt{6}-2}\); \(y=\frac{1}{9+4\sqrt{5}}\)3. Rút gọn rồi tính...
Đọc tiếp

1. Cho biểu thức:

\(C=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+\:1}{\sqrt{x}+\:2}+\frac{\sqrt{x}+2}{1-\sqrt{x}}\)

    a) Tìm điều kiện của x để C có nghĩa.

    b) Rút gọn C.

    c) Tìm các giá trị nguyên của x để giá trị C là số ngueyeenn.


2. Cho biểu thức: \(A=x^2-3x\sqrt{y}+2y\)

    a) Phân tích A thành nhân tử.

    b) Tính giá trị của A khi: \(x=\frac{1}{\sqrt{6}-2}\)\(y=\frac{1}{9+4\sqrt{5}}\)


3. Rút gọn rồi tính giá trị của biểu thức tại \(x=3\)

\(M=\frac{\sqrt{x-2\sqrt{2}}}{\sqrt{x^2-4x\sqrt{2}+8}}-\frac{\sqrt{x+2\sqrt{2}}}{\sqrt{x^2+4x\sqrt{2}+8}}\)


4. Cho biểu thức: ​\(\frac{\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}}{\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1}\)với \(x\ge0\)và \(x\:\ne9\)

    a) Rút gọn P.

    b) Tìm giá trị của x ​để \(P\:< -\frac{1}{2}\)

    c) Tìm giá trị của x ​để P có giá trị nhỏ nhất.


5. Cho biểu thức:

\(Q=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)

    a) Tìm giá trị của x để Q có nghĩa.

    b) Rút gọn Q.

    c) Tìm giá trị của của x để Q có giá trị nguyên.

4
11 tháng 5 2017

moi tay

8 tháng 6 2017

giải giùm mình bài 5 với