Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-1\right)\left(x-2\right)>0\)
TH1:\(\Rightarrow\hept{\begin{cases}x-1< 0\\x-2< 0\end{cases}}\Rightarrow\hept{\begin{cases}x< 1\\x< 2\end{cases}}\)
TH2:\(\Rightarrow\hept{\begin{cases}x-1>0\\x-2>0\end{cases}}\Rightarrow\hept{\begin{cases}x>1\\x>2\end{cases}}\)
\(A=\frac{x+3}{x+7}>1\)
\(\Rightarrow x+3>x+7\)
\(\Leftrightarrow0x>4\)
vậy không có giá trị nào của x để A>1
Để (x - 1)(x - 2) > 0
Thì ta có 2 trường hợp :
Th1 : \(\hept{\begin{cases}x-1>0\\x-2>0\end{cases}\Rightarrow\hept{\begin{cases}x>1\\x>2\end{cases}\Rightarrow x>2}}\)
Th2: \(\hept{\begin{cases}x-1< 0\\x-2< 0\end{cases}}\Rightarrow\hept{\begin{cases}x< 1\\x< 2\end{cases}\Rightarrow x< 2}\)
1/a) Ta có: \(A=x^4+\left(y-2\right)^2-8\ge-8\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)
Vậy GTNN của A = -8 khi x=0, y=2.
b) Ta có: \(B=|x-3|+|x-7|\)
\(=|x-3|+|7-x|\ge|x-3+7-x|=4\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le7\end{cases}}\Rightarrow3\le x\le7\)
Vậy GTNN của B = 4 khi \(3\le x\le7\)
2/ a) Ta có: \(xy+3x-7y=21\Rightarrow xy+3x-7y-21=0\)
\(\Rightarrow x\left(y+3\right)-7\left(y+3\right)=0\Rightarrow\left(x-7\right)\left(y+3\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=7\\y=-3\end{cases}}\)
b) Ta có: \(\frac{x+3}{y+5}=\frac{3}{5}\)và \(x+y=16\)
Áp dụng tính chất bằng nhau của dãy tỉ số, ta có:
\(\frac{x+3}{y+5}=\frac{3}{5}\Rightarrow\frac{x+3}{3}=\frac{y+5}{5}=\frac{x+y+8}{8}=\frac{16+8}{8}=\frac{24}{8}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x+3}{3}=3\Rightarrow x+3=9\Rightarrow x=6\\\frac{y+5}{5}=3\Rightarrow y+5=15\Rightarrow y=10\end{cases}}\)
Bài 3: đề không rõ.
Bài 1:\(a,A=x^4+\left(y-2\right)^2-8\)
Có \(x^4\ge0;\left(y-2\right)^2\ge0\)
\(\Rightarrow A\ge0+0-8=-8\)
Dấu "=" xảy ra khi \(MinA=-8\Leftrightarrow x=0;y=2\)
\(b,B=\left|x-3\right|+\left|x-7\right|\)
\(\Rightarrow B=\left|x-3\right|+\left|7-x\right|\)
\(\Rightarrow B\ge\left|x-3+7-x\right|\)
\(\Rightarrow B\ge\left|-10\right|=10\)
Dấu "=" xảy ra khi \(MinB=10\Leftrightarrow3\le x\le7\Rightarrow x\in\left(3;4;5;6;7\right)\)
Làm khâu rút gọn thôi
\(=\frac{15}{x+2}+\frac{42}{3x+6}\)
\(=\frac{15}{x+2}+\frac{42}{3\left(x+2\right)}\)
\(=\frac{3.15+42}{3\left(x+2\right)}\)
\(=\frac{87}{3\left(x+2\right)}\)
\(=\frac{29}{x+2}\)
Câu b có phải để tử chia hết cho mẫu không nhỉ? Không chắc thôi để ngkh làm
\(a=\frac{2x+4}{x-3}=\frac{2x-6+6+4}{x-3}=\frac{2x-6+10}{x-3}=\frac{2x-6}{x-3}+\frac{10}{x-3}=\)\(2+\frac{10}{x-3}\) Vay de 2x+4 /x-3 la so nguyen thi 2+10/x-3 phai la so nguyen hay 10/x-3 la so nguyen Suy ra x-3 thuoc uoc cua 10=(1;-1;2;-2;5;-5;10;-10) Roi giai ra tung truong hop
\(\frac{\left(x+1\right)}{x-4}+2>0\)
điều kiện x khác 4
\(A\Leftrightarrow\left(x+1\right)+2.\left(x-4\right)>0\)
\(\Leftrightarrow x+1+2x-8>0\)
\(\Leftrightarrow3x>7\Leftrightarrow x>\frac{7}{3}\)
các giái trị của x là: x > 7/4 loại nghiệm x = 4 ( theo điều kiện vì x khác 4 )