Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: A = x^2+4x
=>A= x(×+4)
Để A có gtri dương=>x và ( x+4) cùng dấu
Xét x và x+4 có gtri dương
=>x lớn hơn 0 (1)
Xét x và x+4 có gtri âm
=>x bé hơn -4. (2)
Từ (1) và (2) ta suy ra
Để A có gtri dương thì x phải lớn hơn 0 và bé hơn -4
b)
Ta có: B = (x-3)(x+7)
=> B = (x+(-3)) (x+7)
=> B = x^2+(-3)x+7x+(-21)
=> B =x(x+5)+(-21)
Để B có gtri dương => x(x+5)>21
Xét x = 1 => B=1(1+5)=6< 21( ko t/mãn)
Tương tự vs 2 ta cũng thấy ko thỏa mãn
Xét x =3=>B=3(3+5)=24>21( t/mãn)
Vậy để B có gtri dương thì x> 3
Còn câu c) thì tịttttttttttt..........(°¤°)
C=(1/2-x).(1/3-x) (1)
x | \(-\infty\) 1/3 1/2 \(+\infty\) |
1/2-x | - - 0 + |
1/3-x | - 0 + + |
(1/2-x).(1/3-x) | + 0 - 0 + |
(1) <=> x<1/3 hoac x>1/2
Vay voi x<1/3 va x>1/2 thi bieu thuc da cho co gia tri duong
a) 2x2 - 4x = 2x(x- 2) có giá trị dương
Th1: 2x > 0 và x - 2 > 0
<=> x > 0 và x > 2
<=> x > 2
Th2: 2x < 0 và x - 2 < 0
<=> x < 0 và x < 2
<=> x < 0
Vậy 2x^2 - 4x có giá trị dương khi và chỉ khi x < 0 hoặc x > 2
b) ( 3x + 1 ) ( 4x - 3 ) dương
Th1: 3x + 1 > 0 và 4x - 3 > 0
<=> x > -1/3 và x > 3/4
<=> x >3/4
Th2: 3x + 1 < 0 và 4x - 3 < 0
<=> x < -1/3 và x < 3/4
<=> x < -1/3
Kết luận: ...
tìm các giá trị của x để các biu thức sau có giá trị dương
A= x^2 + 4x
B= (x-3)(x+7)
C=(1/2- x)(1/3 -x)
mình ko biết xin lỗi bạn nha!
mình ko biết xin lỗi bạn nha!
mình ko biết xin lỗi bạn nha!
mình ko biết xin lỗi bạn nha!
mình ko biết xin lỗi bạn nha!
mình ko biết xin lỗi bạn nha!
mình ko biết xin lỗi bạn nha!
mình ko biết xin lỗi bạn nha!
a, Để x2 + 5x đạt giá trị âm thì 1 trong 2 số là âm và GTTĐ của số âm hơn GTTĐ của số tư nhiên
và x2 luôn tự nhiên => 5x âm
=> GTTĐ của x2 < GTTĐ của 5x
=> x < 5
=> x thuộc {4; 3; 2; 1;....}
Vậy....
\(A=x^2+4x< 0\)
\(=>x^2< -4x\)
\(=>x< -4\)
\(\left(x-3\right)\left(x+7\right)< 0\)
\(=>x-3< 0< x+7\)hoặc \(x+7< 0< x-3\)
\(=>-7< x< 3\)
\(x^2+4x< 0\)
\(\Rightarrow x\left(x+4\right)< 0\)
Th1 : \(\hept{\begin{cases}x>0\\x+4< 0\end{cases}\Rightarrow\hept{\begin{cases}x>0\\x< -4\end{cases}}}\)
Th2 : \(\hept{\begin{cases}x< 0\\x+4>0\end{cases}\Rightarrow\hept{\begin{cases}x< 0\\x>-4\end{cases}}}\)
Những câu còn lại tương tự thôi
a/ Ta có \(A=x^2+4x=x\left(x+4\right)\)
Để A > 0
=> \(x\left(x+4\right)>0\)
=> \(\hept{\begin{cases}x>0\\x+4>0\end{cases}}\)hoặc \(\hept{\begin{cases}x< 0\\x+4< 0\end{cases}}\)
=> \(\hept{\begin{cases}x>0\\x>-4\end{cases}}\)hoặc \(\hept{\begin{cases}x< 0\\x< -4\end{cases}}\)
=> \(\orbr{\begin{cases}x>0\\x< -4\end{cases}}\)
Vậy khi \(\orbr{\begin{cases}x>0\\x< -4\end{cases}}\)thì A > 0.
b/ Ta có \(B=\left(x-3\right)\left(x+7\right)\)
\(B=x^2+7x-3x-21\)
\(B=x^2+4x-21\)
\(B=x^2+4x+4-25\)
\(B=\left(x+2\right)^2-25\)
Để B > 0
=> \(\left(x+2\right)^2-25>0\)
<=> \(\left(x+2\right)^2>25\)
<=> \(\orbr{\begin{cases}x+2>5\\x+2>-5\end{cases}}\)
<=> \(\orbr{\begin{cases}x>3\\x>-7\end{cases}}\)
Vậy khi \(\orbr{\begin{cases}x>3\\x>-7\end{cases}}\)thì B > 0.
c/ Ta có \(C=\left(\frac{1}{2}-x\right)\left(\frac{1}{3}-x\right)=\frac{1}{6}-\frac{1}{2}x-\frac{1}{3}x+x^2=\frac{1}{6}-\frac{5}{6}x^2+x^2=\frac{1}{6}-\frac{1}{6}x^2=\frac{1}{6}\left(1-x^2\right)\)
Để C > 0
<=> \(\frac{1}{6}\left(1-x^2\right)>0\)
<=> \(1-x^2>0\)
<=> \(x^2>1\)
<=> \(x>\pm1\)
Vậy khi \(\orbr{\begin{cases}x>1\\x>-1\end{cases}}\)thì C > 0.