K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2019

a. x2 -6m + 2m + 5 =0 (có a=1 ; b=-6 ; c=2m+5)

Ta có Δ=b2 - 4ac ⇒ Δ=26-8m

Để pt có 2 nghiệm thì Δ≥0 ⇒ 26-8m≥0 ⇔ m≤\(\frac{-13}{4}\)

Vì pt có 2 nghiệm nên theo hệ thúc Vi-ét ta có: x1 + x2 = 6 ; x1x2=2m+5

Ta có: x12 + x22 = 26 ⇔ x12 + 2x1x2 + x22 - 2x1x2 = 26 ⇔ \(\left(x_1+x_2\right)^2\) - 2x1x2 = 26

Thay số: 62 - 2(2m+5) = 26 ⇒ 36 - 4m - 10 = 26 ⇒ 4m = 0 ⇒ m=0.

Vậy với m=0 thì ...........

NV
19 tháng 3 2019

a/ \(\Delta'=9-\left(2m+5\right)=4-2m\ge0\Rightarrow m\le2\)

Khi đó theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=6\\x_1x_2=2m+5\end{matrix}\right.\)

\(x_1^2+x_2^2=26\)

\(\Leftrightarrow x_1^2+2x_1x_2+x_2^2-2x_1x_2=26\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-26=0\)

\(\Leftrightarrow6^2-2\left(2m+5\right)-26=0\)

\(\Leftrightarrow-4m=0\)

\(\Rightarrow m=0\) (thỏa mãn)

DD
14 tháng 5 2021

\(\Delta'=\left(m+1\right)^2-\left(2m-3\right)=m^2+4>0,\forall m\inℝ\)

nên phương trình luôn có hai nghiệm phân biệt \(x_1+x_2\)

Theo định lí Viete: 

\(\hept{\begin{cases}x_1+x_2=2m+2\\x_1x_2=2m-3\end{cases}}\)

\(P=\left|\frac{x_1+x_2}{x_1-x_2}\right|=\frac{\left|x_1+x_2\right|}{\left|x_1-x_2\right|}=\frac{\left|x_1+x_2\right|}{\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}}\)

\(=\frac{\left|2m+2\right|}{\sqrt{\left(2m+2\right)^2-4\left(2m-3\right)}}=\frac{\left|2m+2\right|}{\sqrt{4m^2+16}}=\frac{\left|m+1\right|}{\sqrt{m^2+4}}\ge0\)

Dấu \(=\)xảy ra khi \(m=-1\)

13 tháng 5 2017

(x1-x2)2=16
<=>(x1+x2)2-4x1x2=16
<=>36-4m=16
<=>m=5( thõa mãn điều kiện delta dương)

16 tháng 1 2019

Pt có nghiệm khi \(\Delta\ge0\)

                        \(\Leftrightarrow\left(m-1\right)^2-4\left(5m-5\right)\ge0\)

                       \(\Leftrightarrow m^2-2m+1-20m+20\ge0\)

                        \(\Leftrightarrow m^2-22m+21\ge0\)

                        \(\Leftrightarrow\orbr{\begin{cases}m\le1\\m\ge21\end{cases}}\)

Theo hệ thức Vi-ét \(\hept{\begin{cases}x_1+x_2=1-m\\x_1x_2=5m-5\end{cases}}\)

Chắc đề là \(x_1^2+x_2^2=3x_1x_2\)

\(\Leftrightarrow\left(x_1+x_2\right)^2=5x_1x_2\)

\(\Leftrightarrow\left(1-m\right)^2=5.\left(5m-5\right)\)

\(\Leftrightarrow1-2m+m^2=25m-25\)

\(\Leftrightarrow m^2-27m+26=0\)

\(\Leftrightarrow\orbr{\begin{cases}m=26\\m=1\end{cases}\left(Tm\right)}\)

Vậy .........

30 tháng 7 2020

Ta có : \(x^2-2x-2m+1=0\)

=> \(\Delta=b^{,2}-ac=1-\left(-2m+1\right)=1+2m-1=2m\)

- Để phương trình có hai nghiệm phân biệt thì :\(\Delta>0\)

=> m > 0 .

- Theo vi ét : \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=1-2m\end{matrix}\right.\)

- Ta có : \(x^2_2\left(x_1^2-1\right)+x^2_1\left(x_2^2-1\right)=8\)

=> \(\left(x_1x_2\right)^2-x^2_2+\left(x_1x_2\right)^2-x^2_1=8\)

=> \(2\left(x_1x_2\right)^2-\left(x_1^2+x_2^2\right)=8\)

=> \(2\left(x_1x_2\right)^2-\left(\left(x_1+x_2\right)^2-2x_1x_2\right)=8\)

=> \(2\left(1-2m\right)^2-\left(2^2-2\left(1-2m\right)\right)=8\)

=> \(2-8m+8m^2-4+2-4m-8=0\)

=> \(8m^2-12m-8=0\)

=> \(\left[{}\begin{matrix}m=2\left(TM\right)\\m=-\frac{1}{2}\left(L\right)\end{matrix}\right.\)

=> m = 2 .

Vậy ...

NV
22 tháng 5 2019

\(\Delta'=\left(2m+1\right)^2-4m^2-4m=1>0\)

Phương trình luôn có 2 nghiệm pb

Do \(\left|x_1-x_2\right|\ge0\Rightarrow x_1+x_2\ge0\Rightarrow2m+1\ge0\Rightarrow m\ge-\frac{1}{2}\)

Khi đó, bình phương 2 vế ta được:

\(\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2\)

\(\Leftrightarrow x_1^2-2x_1x_2+x_2^2=x_1^2+2x_1x_2+x_2^2\)

\(\Leftrightarrow-4x_1x_2=0\Leftrightarrow x_1x_2=0\)

\(\Leftrightarrow4m^2+4m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-1< -\frac{1}{2}\left(l\right)\end{matrix}\right.\)

24 tháng 5 2018

a) x= -2 , x= 0

24 tháng 5 2018

m=1 hacm=5

4 tháng 4 2016

dùng viet để giải

4 tháng 4 2016

dùng đen ta phẩy để giải pt. 

kết quả khi m >  \(\frac{5}{6}\)thì pt có nghiệm

theo vi-ét ta có: x1 + x2 = \(\frac{-b}{a}=\frac{2\left(m-2\right)}{1}=2\left(m-2\right)\)(1)

                                x1 . x2 = \(\frac{c}{a}=\frac{m^2+2m-3}{1}=m^2+2m-3\)(2)

theo đầu bài ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{5}\)

                       <=> \(\frac{x_2+x_1}{x_1.x_2}=\frac{x_1+x_2}{5}\)(3)

thay (1) và (2) vào (3) r tính m. kết quả khi m=2 thì pt có nghiệm thỏ mãn đk đó.