K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2018

  ( m 2 + m + 3 ) x 2 + ( 4 m 2 + m + 2 ) x + m = 0  có a =   m 2   +   m   +   3 > 0, ∀m và có b =   4 m 2   +   m   +   2 > 0, ∀m, nên ab > 0, ∀m. Vì vậy không có giá trị nào của m để phương trình đã cho có hai nghiệm dương phân biệt.

5 tháng 4 2017

a) \(x^2-2x+m^2+m+3=0\)
    Xét \(\Delta=1^2-\left(m^2+m+3\right)=-\left(m^2+m+2\right)=\)
                                                        \(=-\left(m+\dfrac{1}{2}\right)^2-\dfrac{7}{4}< 0\) với mọi m.
  DO đó phương trình luôn vô nghiệm nên không có giá trị nào thỏa mãn.

b)

(1) a khác 0: \(m^2+m+3>0\forall m\)

(2) \(\Delta>0\Rightarrow\left(4m^2+m+2\right)^2-4m\left(m^2+m+3\right)>0\)

\(=16m^4+4m^3+13m^2-8m+4>0\) 

(3) \(\dfrac{c}{a}>0\) => m > 0

(4) \(-\dfrac{b}{a}\) \(< 0\) \(\Leftrightarrow\)\(4m^2+m+2< 0\Rightarrow4\left(m+\dfrac{1}{8}\right)^2+\dfrac{31}{16}< 0\) vô lý

Kết luận không có m thỏa mãn đk đầu bài

 

 

 

 

 

NV
14 tháng 12 2020

1.

Đặt \(\sqrt{x^2-4x+5}=t\ge1\Rightarrow x^2-4x=t^2-5\)

Pt trở thành:

\(4t=t^2-5+2m-1\)

\(\Leftrightarrow t^2-4t+2m-6=0\) (1)

Pt đã cho có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm pb đều lớn hơn 1

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=4-\left(2m-6\right)>0\\\left(t_1-1\right)\left(t_2-1\right)>0\\\dfrac{t_1+t_2}{2}>1\\\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}10-2m>0\\t_1t_2-\left(t_1+t_1\right)+1>0\\t_1+t_2>2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 5\\2m-6-4+1>0\\4>2\end{matrix}\right.\) \(\Leftrightarrow\dfrac{9}{2}< m< 5\)

NV
14 tháng 12 2020

2.

Để pt đã cho có 2 nghiệm:

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\\Delta'=1+4\left(m-3\right)\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\m\ge\dfrac{11}{4}\end{matrix}\right.\)

Khi đó:

\(x_1^2+x_2^2=4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)

\(\Leftrightarrow\dfrac{4}{\left(m-3\right)^2}+\dfrac{8}{m-3}=4\)

\(\Leftrightarrow\dfrac{1}{\left(m-3\right)^2}+\dfrac{2}{m-3}-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{m-3}=-1-\sqrt{2}\\\dfrac{1}{m-3}=-1+\sqrt{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=4-\sqrt{2}< \dfrac{11}{4}\left(loại\right)\\m=4+\sqrt{2}\end{matrix}\right.\)

22 tháng 9 2017

x 2   -   ( m 3   +   m   -   2 ) x   +   m 2   +   m   -   5  = 0 có hai nghiệm phân biệt trái dấu khi và chỉ khi m 2   +   m   -   5   <   0  

Giải sách bài tập Toán 10 | Giải sbt Toán 10

24 tháng 11 2021

\(x-4\sqrt{x+3}+m=0\)

\(\Leftrightarrow x+3-4\sqrt{x+3}-3+m=0\left(1\right)\)

\(đăt:\sqrt{x+3}=t\left(t\ge0\right)\)

\(\left(1\right)\Leftrightarrow t^2-4t-3+m=0\Leftrightarrow f\left(t\right)=t^2-4t-3=-m\left(2\right)\)

\(\left(1\right)-có-2ngo-phân-biệt\Leftrightarrow\left(2\right)có-2ngo-phân-biệt-thỏa:t\ge0\)

\(\Rightarrow f\left(0\right)=-3\)

\(\Rightarrow f\left(t\right)min=\dfrac{-\Delta}{4a}=-7\Leftrightarrow t=2\)

\(\Rightarrow-7< -m\le-3\Leftrightarrow3\le m< 7\)

15 tháng 12 2021

\(t^2-4t-3+m=0\Leftrightarrow t^2-4t-3=-m\)

\(có-2nghiệm-pb-trên[0;\text{+∞})\)

\(xét-bảng-biến-thiên-củaf\left(t\right)=t^2-4t-3,trên[0;\text{+∞})\)

f(t) 0 2 +∞ -∞ -3 -7 -m -m t

dựa vào bảng biến thiên ta thấy số nghiệm của phương trình f(t)

là số giao điểm của đường thẳng y=-m 

\(\Rightarrow-7< -m\le-3\Leftrightarrow3\le m< 7\)

 

21 tháng 3 2022

cíu!!!

Trường hợp 1: \(m\ne\pm2\)

Để phương trình có đúng hai nghiệm phân biệt thì phương trình này sẽ có hai nghiệm trái dấu

=>\(m^2-4< 0\)

hay -2<m<2

Trường hợp 2: m=2

Pt sẽ là 1=0(vô lý)

Trường hợp 3: m=-2

=>-4x2+1=0(nhận)

Vậy: -2<=m<2

1 tháng 4 2018

x 2   -   2 x   +   m 2   +   m   +   3   =   0 Δ '   =   - m 2   -   m   -   2   <   0 , ∀m. Do đó không có giá trị nào của m thỏa mãn yêu cầu bài toán.

NV
7 tháng 5 2021

Pt đã cho có 2 nghiệm pb khi và chỉ khi:

\(\Delta'=\left(m+1\right)^2-\left(-2m-1\right)>0\)

\(\Leftrightarrow m^2+4m+2>0\)

\(\Rightarrow\left[{}\begin{matrix}m>-2+\sqrt{2}\\m< -2-\sqrt{2}\end{matrix}\right.\)

7 tháng 5 2021

undefined