\(\left\{{}\begin{matrix}mx-y=5\\2x+3my=7\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2021

\(\left\{{}\begin{matrix}mx+y=3\left(1\right)\\4x+my=6\left(2\right)\end{matrix}\right.\) 

TH1: m=0 có nghiệm:\(\left\{{}\begin{matrix}x=\dfrac{6}{4}\\y=3\end{matrix}\right.\) ( Thỏa mãn điều kiện đề bài ) => nhận m=0

TH2: m khác 0 \(\dfrac{m}{4}\ne\dfrac{1}{m}\Leftrightarrow m\ne\pm2\) 

\(\left\{{}\begin{matrix}\left(1\right)\Rightarrow y=3-mx\\\left(2\right)\Rightarrow x=\dfrac{6-my}{4}=\dfrac{6-m\left(3-mx\right)}{4}\end{matrix}\right.\) 

\(\Rightarrow\left(m^2-4\right)x=3m-6\) \(\Rightarrow x=\dfrac{3}{m+2}\) đối chiếu điều kiện: (x>1)

\(\Rightarrow\dfrac{3}{m+2}-1>0\) \(\Leftrightarrow\dfrac{1-m}{m+2}>0\)

TH1: \(\left\{{}\begin{matrix}1-m< 0\\m+2< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>1\\m< -2\end{matrix}\right.\) ( Loại )

TH2: \(\left\{{}\begin{matrix}1-m>0\\m+2>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< 1\\m>-2\end{matrix}\right.\) ( Nhận ) \(\Rightarrow m\in\left(-2;1\right)\) 

Đối chiếu điều kiện: y>0 \(\Leftrightarrow3-m\left(\dfrac{3}{m+2}\right)>0\) 

\(\Leftrightarrow\dfrac{2}{m+2}>0\) \(\Leftrightarrow m>-2\) 

Gộp cả 2 điều kiện x và y ta được m=-1 và m=0 

Nãy giờ gõ nó cứ bị lỗi :D 

26 tháng 6 2020

Ta có : \(\left\{{}\begin{matrix}mx+y=3\\4x+my=6\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=3-mx\\4x+m\left(3-mx\right)=6\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=3-mx\\4x+3m-m^2x=6\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=3-mx\\x=\frac{6-3m}{4-m^2}\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=3-\frac{3m}{m+2}=\frac{3m+6-3m}{m+2}=\frac{6}{m+2}\\x=\frac{6-3m}{4-m^2}=\frac{3m-6}{m^2-4}=\frac{3\left(m-2\right)}{\left(m-2\right)\left(m+2\right)}=\frac{3}{m+2}\end{matrix}\right.\)

- Ta có : \(\left\{{}\begin{matrix}x>2\\y>0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}\frac{3}{m+2}>2\\\frac{6}{m+2}>0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}\frac{3}{m+2}-2=\frac{3-2m-4}{m+2}>0\\\frac{6}{m+2}>0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}3-2m-4>0\\m+2>0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}2m+1< 0\\m+2>0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}m< -\frac{1}{2}\\m>-2\end{matrix}\right.\)

=> \(-2< m< -\frac{1}{2}\)

Vậy ....

12 tháng 2 2019

hệ có nghiệm duy nhất <=> \(\dfrac{\left(m+1\right)}{m}\ne\dfrac{-1}{1}\Leftrightarrow\dfrac{m+1}{m}\ne-1\Leftrightarrow m+1\ne-m\\ \Leftrightarrow2m\ne-1\Leftrightarrow m\ne-\dfrac{1}{2}\)

vậy \(m\ne-\dfrac{1}{2}\) thì hệ có nghiệm duy nhất là x=\(\dfrac{3+m}{2m+1}\) và y=\(\dfrac{m^2-2m}{2m+1}\)

x+y>0 <=> \(\dfrac{3+m}{2m+1}+\dfrac{m^2-2m}{2m+1}>0\Leftrightarrow\dfrac{m^2-m+3}{2m+1}>0\)(*)

\(m^2-m+3=m^2-2\cdot\dfrac{1}{2}m+\dfrac{1}{4}+\dfrac{11}{4}=\left(m-\dfrac{1}{2}\right)^2+\dfrac{11}{4}>0,\forall m\)nên (*) <=> 2m+1>0 <=> m>-1/2

11 tháng 2 2019

Ai đó làm ơn giúp vớiiii :<<

25 tháng 6 2020

Hỏi đáp Toán

12 tháng 2 2020

a) Thay m = -1 ta có:

\(\left\{{}\begin{matrix}-x-y=2\\3x-y=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x=3\\x+y=-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{3}{4}\\y=\frac{-11}{4}\end{matrix}\right.\)

Vậy...

b) hpt \(\Leftrightarrow\left\{{}\begin{matrix}y=mx-2\\3x+m\left(mx-2\right)=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x+xm^2-2m=5\\y=mx-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\left(m^2+3\right)=2m+5\\y=mx-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{2m+5}{m^2+3}\\y=\frac{m\left(2m+5\right)}{m^2+3}-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{2m+5}{m^2+3}\\y=\frac{5m-6}{m^2+3}\end{matrix}\right.\)

\(x>0,y>0\Leftrightarrow\left\{{}\begin{matrix}2m+5>0\\5m-6>0\end{matrix}\right.\)\(\Leftrightarrow m>\frac{6}{5}\)

Vậy...

14 tháng 2 2020

Bạn có thể giải chi tiết phần a ko ạ