K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2023

a: TXĐ: D=R\{-1}

\(y'=\dfrac{\left(x+m\right)'\left(x+1\right)-\left(x+1\right)'\left(x+m\right)}{\left(x+1\right)^2}\)

\(=\dfrac{x+1-x-m}{\left(x+1\right)^2}=\dfrac{1-m}{\left(x+1\right)^2}\)

Để hàm số nghịch biến trên từng khoảng xác định thì \(y'< 0\forall x\)

=>\(\dfrac{1-m}{\left(x+1\right)^2}< 0\)

=>1-m<0

=>m>1

b: TXĐ: D=R\{m}

\(y=\dfrac{2x-3m}{x-m}\)

=>\(y'=\dfrac{\left(2x-3m\right)'\left(x-m\right)-\left(2x-3m\right)\left(x-m\right)'}{\left(x-m\right)^2}\)

\(=\dfrac{2\left(x-m\right)-\left(2x-3m\right)}{\left(x-m\right)^2}=\dfrac{2x-2m-2x+3m}{\left(x-m\right)^2}\)

\(=\dfrac{m}{\left(x-m\right)^2}\)

Để hàm số đồng biến trên từng khoảng xác định thì \(y'>0\forall x\)

=>\(\dfrac{m}{\left(x-m\right)^2}>0\)

=>m>0

12 tháng 11 2023

a: TXĐ: D=R\{3}

\(y=\dfrac{2m-x}{x-3}\)

=>\(y'=\dfrac{\left(2m-x\right)'\left(x-3\right)-\left(2m-x\right)\left(x-3\right)'}{\left(x-3\right)^2}\)

\(=\dfrac{-\left(x-3\right)-2m+x}{\left(x-3\right)^2}\)

\(=\dfrac{3-2m}{\left(x-3\right)^2}\)

Để hàm số đồng biến trên từng khoảng xác định thì y'>0 với mọi x thỏa mãn ĐKXĐ

=>\(\dfrac{3-2m}{\left(x-3\right)^2}>0\)

=>3-2m>0

=>2m<3

=>\(m< \dfrac{3}{2}\)

b: TXĐ: D=R\{-m}

\(y=\dfrac{x+3}{x+m}\)

=>\(y'=\dfrac{\left(x+3\right)'\left(x+m\right)-\left(x+3\right)\left(x+m\right)'}{\left(x+m\right)^2}\)

\(=\dfrac{x+m-x-3}{\left(x+m\right)^2}=\dfrac{m-3}{\left(x+m\right)^2}\)

Để hàm số nghịch biến trên từng khoảng xác định thì \(y'< 0\forall x\in TXĐ\)

=>\(\dfrac{m-3}{\left(x+m\right)^2}< 0\)

=>m-3<0

=>m<3

12 tháng 11 2023

a: ĐKXĐ: x<>m

=>TXĐ: D=R\{m}

\(y=\dfrac{mx-2m-3}{x-m}\)

=>\(y'=\dfrac{\left(mx-2m-3\right)'\cdot\left(x-m\right)-\left(mx-2m-3\right)\left(x-m\right)'}{\left(x-m\right)^2}\)

\(=\dfrac{m\left(x-m\right)-\left(mx-2m-3\right)}{\left(x-m\right)^2}\)

\(=\dfrac{mx-m^2-mx+2m+3}{\left(x-m\right)^2}=\dfrac{-m^2+2m+3}{\left(x-m\right)^2}\)

Để hàm số đồng biến trên từng khoảng xác định thì \(y'>0\forall x\in TXĐ\)

=>\(\dfrac{-m^2+2m+3}{\left(x-m\right)^2}>0\)

=>\(-m^2+2m+3>0\)

=>\(m^2-2m-3< 0\)

=>(m-3)(m+1)<0

TH1: \(\left\{{}\begin{matrix}m-3>0\\m+1< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>3\\m< -1\end{matrix}\right.\)

=>\(m\in\varnothing\)

TH2: \(\left\{{}\begin{matrix}m-3< 0\\m+1>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>-1\\m< 3\end{matrix}\right.\)

=>-1<m<3

b: TXĐ: D=R\{m}

\(y=\dfrac{mx-4}{x-m}\)

=>\(y'=\dfrac{\left(mx-4\right)'\left(x-m\right)-\left(mx-4\right)\left(x-m\right)'}{\left(x-m\right)^2}\)

\(=\dfrac{m\left(x-m\right)-\left(mx-4\right)}{\left(x-m\right)^2}\)

\(=\dfrac{mx-m^2-mx+4}{\left(x-m\right)^2}=\dfrac{-m^2+4}{\left(x-m\right)^2}\)

Để hàm số đồng biến trên từng khoảng xác định thì \(\dfrac{-m^2+4}{\left(x-m\right)^2}>0\)

=>\(-m^2+4>0\)

=>\(-m^2>-4\)

=>\(m^2< 4\)

=>-2<m<2

12 tháng 11 2023

a: ĐKXĐ: x<>-m

=>TXĐ: D=R\{-m}

\(y=\dfrac{mx-2m+15}{x+m}\)

=>\(y'=\dfrac{\left(mx-2m+15\right)'\left(x+m\right)-\left(mx-2m+15\right)\left(x+m\right)'}{\left(x+m\right)^2}\)

\(=\dfrac{m\left(x+m\right)-mx+2m-15}{\left(x+m\right)^2}\)

\(=\dfrac{m^2+2m-15}{\left(x+m\right)^2}\)

Để hàm số đồng biến trên từng khoảng xác định là \(y'>0\forall x\in TXĐ\)

=>\(\dfrac{m^2+2m-15}{\left(x+m\right)^2}>0\)

=>\(m^2+2m-15>0\)

=>(m+5)(m-3)>0

TH1: \(\left\{{}\begin{matrix}m+5>0\\m-3>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>3\\m>-5\end{matrix}\right.\)

=>m>3

TH2: \(\left\{{}\begin{matrix}m+5< 0\\m-3< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m< -5\\m< 3\end{matrix}\right.\)

=>m<-5

b: TXĐ: D=R\{-m}

\(y=\dfrac{mx+4m}{x+m}\)

=>\(y'=\dfrac{\left(mx+4m\right)'\left(x+m\right)-\left(mx+4m\right)\left(x+m\right)'}{\left(x+m\right)^2}\)

\(=\dfrac{m\left(x+m\right)-mx-4m}{\left(x+m\right)^2}\)

\(=\dfrac{mx+m^2-mx-4m}{\left(x+m\right)^2}=\dfrac{m^2-4m}{\left(x+m\right)^2}\)

Để hàm số đồng biến trên từng khoảng xác định thì \(y'>0\forall x\)

=>\(\dfrac{m^2-4m}{\left(x+m\right)^2}>0\)

=>\(m^2-4m>0\)

=>\(m\left(m-4\right)>0\)

TH1: \(\left\{{}\begin{matrix}m>0\\m-4>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>0\\m>4\end{matrix}\right.\)

=>m>4

TH2: \(\left\{{}\begin{matrix}m< 0\\m-4< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m< 0\\m< 4\end{matrix}\right.\)

=>m<0

12 tháng 11 2023

1: TXĐ: D=R\{-4}

\(y=\dfrac{x+m^2}{x+4}\)

=>\(y'=\dfrac{\left(x+m^2\right)'\left(x+4\right)-\left(x+m^2\right)\left(x+4\right)'}{\left(x+4\right)^2}\)

\(=\dfrac{x+4-x-m^2}{\left(x+4\right)^2}=\dfrac{4-m^2}{\left(x+4\right)^2}\)

Để hàm số đồng biến trên từng khoảng xác định thì 

\(\dfrac{4-m^2}{\left(x+4\right)^2}>0\forall x\in TXĐ\)
=>\(4-m^2>0\)

=>\(m^2< 4\)

=>-2<m<2

 

 

24 tháng 9 2023

help

5 tháng 9 2016

a) Sai , vì chẳng hạn trên khoảng \(\left(-\frac{\pi}{2};\frac{\pi}{2}\right)\) , hàm số y = sinx đồng biến nhưng hàm số y = cosx không nghịch biến .

b) Đúng , vì nếu trên khoảng J , hàm số y = sin2x đồng thời thì với x1 , x2 tùy ý thuộc J mà x1 < x2 , ta có sin2x1 < sin2x2 , từ đó

cos2x1 = 1 - sin2x1 > 1 - sin2x2 = cos2x2 , tức là hàm số y = cos2x nghịch biến trên J .