\(x^2-4xy^2+2xz-3y^2\) ) = 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

`@` `\text {Ans}`

`\downarrow`

`a)`

`A + (x^2 - 4xy^2 + 2xz - 3y^2) = 2xz - 5xy^2 - x^2`

`=> A = (2xz - 5xy^2 - x^2) - (x^2 - 4xy^2 + 2xz - 3y^2)`

`= 2xz - 5xy^2 - x^2 - x^2 + 4xy^2 - 2xz + 3y^2`

`= (2xz - 2xz) + (-5xy^2 + 4xy^2) + (-x^2 - x^2) + 3y^2`

`= -xy^2 - 2x^2 + 3y^2`

Vậy, `A= -xy^2 - 2x^2 - 3y^2`

`b)`

`B - (xy+y^2-x^2) = x^2 + y^2`

`=> B = x^2 + y^2 + xy + y^2 - x^2`

`= (x^2 - x^2) + (y^2 + y^2) + xy`

`= 2y^2 + xy`

Vậy, `B = 2y^2 + xy.`

a: A=2xz-5xy^2-x^2-x^2+4xy^2-2xz+3y^2

=-2x^2-xy^2+3y^2

b: B=x^2+y^2+xy+y^2-x^2

=2y^2+xy

25 tháng 5 2017

a) (5x2y-5xy2+xy) + (xy-x2y2+5xy2)

= 5x2y-5xy2+xy+xy-x2y2+5xy2

= 5x2y+(5xy2-5xy2)+(xy+xy)-x2y2

= 5x2y+2xy-x2y2

b) (x2+y2+z2) + (x2-y2+z2)

= x2+y2+z2+x2-y2+z2

= (x2+x2)+(y2-y2)+(z2+z2)

= 2x2+2z2

11 tháng 1 2018

a)( \(5x^2y\)\(-\) \(5xy^2\) \(+\) \(xy\)) + (\(xy\) \(-\) \(x^2y^2\) \(+\) \(5xy^2\))

= \(5x^2y-5xy^2+xy+xy-x^2y^2+5xy^2\)

= \(5x^2y+2xy-x^2y^2\)

b) \(\left(x^2+y^2+z^2\right)+\left(x^2-y^2+z^2\right)\)

= \(x^2+y^2+z^2+x^2-y^2+z^2\)

=\(2x^2+2z^2\)

=\(2\left(x+z\right)^2\)

17 tháng 7 2016

A = x^2 + 2. (x+y)^2 = 4y^2 + 2. ( 3y)^2 = 22y^2 = 22. ( 2 căn 2 ) ^2 = 176

B = - ( x+ 2y ) ^2 +7y^2 = - ( 4y)^2 + 7y^2 = -9 y^2 = -72

23 tháng 5 2020

Bài 1:

\(A+B=7x^2-3xy+2y^2\)

\(A-B=x^2-7xy+4y^2\)

Bài 2:

a) \(M=6x^2+9xy-y^2-\left(5x^2-2xy\right)\)

\(M=x^2+11xy-y^2\)

b) \(N=\left(3xy-4y^2\right)-\left(x^2-7xy+8y^2\right)\)

\(N=-x^2-12y^2+10xy\)

23 tháng 5 2020

cảm ơn bạn

16 tháng 6 2017

1) \(A=2xy^2+3xy-xy^2+5xy^2+5xy+1\)

a, \(A=2xy^2+3xy-xy^2+5xy^2+5xy+1\)

= \(6xy^2+8xy+1\)

b, giá trị của biểu thức tại x = 1 và y = 2 là:

\(A=6.1.2^2+8.1.2+1=41\)

2) và 3) bạ vt khó hiểu wa

16 tháng 6 2017

2) đề bài này là tìm b.a.c á bn, ghi đề chưa rõ lắm nên tui cx pó tay

3)

a/ Có: \(4x+9=0\)

\(\Leftrightarrow4x=-9\Rightarrow x=-\dfrac{9}{4}\)

vậy.............

b/ Có: \(-5x+6=0\)

\(\Leftrightarrow-5x=-6\Rightarrow x=\dfrac{6}{5}\)

Vậy....................

c/ có: \(x^2-4=0\)

\(\Leftrightarrow x^2=4\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

Vậy ..................

d/ Có: \(9-x^2=0\)

\(\Leftrightarrow x^2=9\Rightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

Vậy.............

e/ Có: \(\left(y+2\right)\left(3-y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y+2=0\\3-y=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=-2\\y=3\end{matrix}\right.\)

Vậy...............

p/s: bài 3 này thuộc dạng cơ bản nên lần sau nhớ suy nghĩ trc khi đăng câu hỏi

28 tháng 8 2017

a) A+(x2+y2)=5x2+3y2−xy

⇒A=(5x2+3y2−xy)−(x2+y2)

=(5−1)x2+(3−1)y2−xy

=4x2+2y2−xy

b) A−(xy+x2−y2)=x2+y2

⇒A=(x2+y2)+(xy+x2-y2)

=(1+1)x2+(1−1)y2+xy

=2x2+xy


29 tháng 5 2020

a) A+(x2+y2)=5x2+3y2−xy

⇒A=(5x2+3y2−xy)−(x2+y2)

=(5−1)x2+(3−1)y2−xy

=4x2+2y2−xy

b) A−(xy+x2−y2)=x2+y2

⇒A=(x2+y2)+(xy+x2-y2)

=(1+1)x2+(1−1)y2+xy

=2x2+xy

17 tháng 3 2019

a) \(B=-\frac{1}{2}x^3y\left(-2xy^2\right)^2\)

\(B=\left(-\frac{1}{2}.-2\right).\left(x^3.x\right)\left(y.y^2\right)^2\)

\(B=1x^4y^5\)

Hệ số: 1

Bậc: 9

Chưa định hình phần b) nó là như nào

20 tháng 3 2018

a, \(A=x^3-x^2y+3x^2-xy+y^2-4y+x+2\)

\(=x^3-x^2y+3x^2-\left(xy-y^2+3y\right)-y+x+3-1\)

\(=x^2\left(x-y+3\right)-y\left(x-y+3\right)+\left(x-y+3\right)-1\)

Thay x-y+3=0 vào A

\(A=x^2.0-y.0+0-1=-1\)

b, \(B=x^3-2x^2y+3x^2+xy^2-3xy-2y+2x+4\)

\(=x^3-x^2y-x^2y+3x^2+xy^2-3xy-2y+2x+4\)

\(=x^3-x^2y+3x^2-x^2y+xy^2-3xy+2x-2y+6-2\)

\(=x^2\left(x-y+3\right)-xy\left(x-y+3\right)+2\left(x-y+3\right)-2\)

Thay x-y+3=0 vào B

\(B=x^2.0-xy.0+2.0-2=-2\)