Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=-x^2+4xy^2-2xz+3y^2\)
b: Theo đề, ta có: \(B+4x^2y+5y^2-3xz+z^2=5y^2+z^2\)
nên \(B=-4x^2y+3xz\)
a) \(2x^2-4x+7\)
\(=2\left(x^2-2x+\dfrac{7}{2}\right)\)
\(=2\left(x^2-x-x+\dfrac{7}{2}\right)\)
\(=2\left(x^2-x-x+1+\dfrac{5}{2}\right)\)
\(=2\left[\left(x-1\right)^2+\dfrac{5}{2}\right]\)
\(=2\left(x-1\right)^2+5\)
Vì \(2\left(x-1\right)^2\ge0\Rightarrow2\left(x-1\right)^2+\dfrac{5}{2}\ge\dfrac{5}{2}>0\)
\(\Rightarrow\) đt vô nghiệm.
Mấy câu kia cũng tách tương tự.
" Giữ nguyên hạng tử bậc hai chia đội hạng tử bậc nhất cân bằng hệ số để đạt được tỉ lệ thức"
Chúc bạn học tốt!!!
\(\left\{{}\begin{matrix}P\left(x\right)=x+x^2-x^3+2x^3+2=x^3+x^2+x+2\\Q\left(x\right)=1+3x-x^2-4x+x^3=x^3-x^2-x+1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}P\left(x\right)+Q\left(x\right)=2x^3+3\\P\left(x\right)-Q\left(x\right)=2x^2+2x+1\end{matrix}\right.\)
a) P + (x2 – 2y2) = x2 – y2 + 3y2 – 1
P = (x2 – y2 + 3y2 – 1) - (x2 – 2y2)
P = x2 – y2 + 3y2 – 1 - x2 + 2y2
P = x2 – x2 – y2 + 3y2 + 2y2 – 1
P = 4y2 – 1.
Vậy P = 4y2 – 1.
b) Q – (5x2 – xyz) = xy + 2x2 – 3xyz + 5
Q = (xy + 2x2 – 3xyz + 5) + (5x2 – xyz)
Q = xy + 2x2 – 3xyz + 5 + 5x2 – xyz
Q = 7x2 – 4xyz + xy + 5
Vậy Q = 7x2 – 4xyz + xy + 5.
a) P+(x2-2y2)= x2-y2+3y2-1
P =(x2-y+3y2-1)-(x2-2y2)
= x2-y+3y2-1-x2+2y2
=(x2-x2)-(y-3y2-2y2)-1
= -4y2-1
b) Q-(5x2-xyz) = xy+2x2-3xyz+5
Q =(xy+2x2-3xyz+5)+(5x2-xyz)
=xy+2x2-3xyz+5+5x2-xyz
=(2x2+5x2)-(3xyz+xyz)+xy+5
=7x2-4xyz+xy+5
Có làm sai mong bạn thông cảm cho!
\(3x^2y^4\)-\(5xy^3\)-\(\dfrac{3}{2}x^2y^4\)+\(3xy^3\)+\(2xy^3\)+1=1,5\(x^2y^4\)+1>0
a)\(4x^2+4x+1=0\)
\(\Leftrightarrow4x^2+2x+2x+1=0\)
\(\Leftrightarrow2x\left(2x+1\right)+\left(2x+1\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left(2x+1\right)^2=0\)
\(\Leftrightarrow2x+1=0\)\(\Leftrightarrow x=-\dfrac{1}{2}\)
b)\(4x^2+5x+2=0\)
\(\Leftrightarrow4x^2+5x+\dfrac{25}{16}+\dfrac{7}{16}=0\)
\(\Leftrightarrow4\left(x^2+\dfrac{5x}{4}+\dfrac{25}{64}\right)+\dfrac{7}{16}=0\)
\(\Leftrightarrow4\left(x+\dfrac{5}{8}\right)^2+\dfrac{7}{16}>0\forall x\) ( vô nghiệm )
a) \(A=-\left(x^2-4xy^2+2xy-3y^2\right)\)
b)
\(C=\left(4x^2+5y^2-3xz+z^2\right)\)
\(D=C+B\)
D không phụ tuộc x => hệ số chứa biến x của B phải là số đối của C
\(B=\left(-4\right)x^2+\left(3z\right)z+E\) với E là một đa thức tùy ý không chứa biến x
b) thêm (y) vào hệ số x^2 viết thiếu
\(B=\left(-4y\right)x^2+3z+E\)