K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2017

Theo đề ta có :

                            abcd + abc + ab + a                                          =  4321      ( a , b , c , d thuộc N )

1000 . a + 100 . b + 10 . c + d + 100 . a + 10 . b + c + 10 . a + b + a = 4321

1000 . a + 100 . a + 10 . a + a + 100 . b + 10 . b + b + 10 . c + c + d = 4321

                    aaaa + bbb + cc + d                                                        = 4321     

Mà bbb + cc + d có giá trị lớn nhất là : 9 . 111 + 9 . 11 + 9  = 1107 

=> 4321 - 1107 < hoặc= aaaa< hoặc = 4321

3214 < hoặc = aaaa  < hoặc = 4321

=> aaaa  = 3333

a = 3

bbb + cc + d = 4321 - 3333 = 988

Giá trị lớn nhất của cc + d là : 9 . 11 + 9 = 108

988 - 108 < hoặc = bbb < hoặc = 988

880 < hoặc = bbb < hoặc = 988

=> bbb = 888

b = 8

cc + d = 988 - 888 = 100

Giá trị lớn nhất của d là 9 

100 - 9 < hoặc = cc < hoặc = 100

=> cc = 99

c = 9

=> d = 100 - 99 = 1 

Vậy a = 3 ; b = 8 ; c = 9 ; d = 1 

3 tháng 7 2019

4000+300+20+1= 4321.

Ko đúng cho mk xin lỗi

Học tốt nhé bn!!!

2 tháng 7 2019

(abcd) + (abc) + (ab) + (a) = 1111.a + 111.b + 11.c + d 
Vậy 1111.a + 111.b + 11.c + d = 4321 
+ Nếu a < 3 => 111.b + 11.c + d > 2098 (vô lý vì b, c, d < 10) 
+ Nếu a > 3 => vế trái > 4321 
Vậy a = 3 => 111.b + 11.c + d = 988 
+ Nếu b < 8 => 11.c + d > 210 (vô lý vì c, d < 10) 
+ Nếu b > 8 => vế trái > 988 
Vậy b = 8 => 11.c + d = 100 
+ Nếu c < 9 => d > 11 (vô lý) 
Vậy c = 9; d = 1 
=> (abcd) = 3891

Ký hiệu (abcd) là số tự nhiên có 4 chữ số. 
(abcd) + (abc) + (ab) + (a) = 1111.a + 111.b + 11.c + d 
Vậy 1111.a + 111.b + 11.c + d = 4321 
+ Nếu a < 3 => 111.b + 11.c + d > 2098 (vô lý vì b, c, d < 10) 
+ Nếu a > 3 => vế trái > 4321 
Vậy a = 3 => 111.b + 11.c + d = 988 
+ Nếu b < 8 => 11.c + d > 210 (vô lý vì c, d < 10) 
+ Nếu b > 8 => vế trái > 988 
Vậy b = 8 => 11.c + d = 100 
+ Nếu c < 9 => d > 11 (vô lý) 
Vậy c = 9; d = 1 
=> (abcd) = 3891

20 tháng 7 2016

Bài 1:

(abcd) + (abc) + (ab) + (a) = 1111.a + 111.b + 11.c + d 
Vậy 1111.a + 111.b + 11.c + d = 4321 
+ Nếu a < 3 => 111.b + 11.c + d > 2098 (vô lý vì b, c, d < 10) 
+ Nếu a > 3 => vế trái > 4321 
Vậy a = 3 => 111.b + 11.c + d = 988 
+ Nếu b < 8 => 11.c + d > 210 (vô lý vì c, d < 10) 
+ Nếu b > 8 => vế trái > 988 
Vậy b = 8 => 11.c + d = 100 

+ Nếu c < 9 => d > 11 (vô lý) 
Vậy c = 9; d = 1 
=> (abcd) = 3891

bài 2:

số tự nhiên A chia cho 29 dư 5 nghĩa là A = 29p + 5 ( p ∈ N ) tương tự A = 31q + 28 ( q ∈ N ) nên 
31q + 28 = 29p + 5 ở đây p > q vì nếu p ≤ q ta được 31q - 29 p + 23 = 0 là vô lý vì 31q - 29 p + 23 > 0 với giả thiết p ≤ q ( 29p ≤ 29q < 31q ) 
vậy p > q ta có 29 ( p - q ) = 23 + 2q vì A là nhỏ nhất nên với p, q ở trên thì p - q nhỏ nhất = 1 thay lại vào ta được q = ( 29 - 23 ) : 2 = 3 vậy p = 4 thay vào ta được A = 29. 4 + 5 = 121 
Thử lại 121 = 31 . 3 + 28 thỏa mãn đề bài

Từ abcd+abc+ab+a = 4321 (1) ta có:
1111a+11b+11c+d = 4321 (2)
- Từ (2) ta thấy a phải nhỏ hơn 4 vì nếu a=4 thì số hạng 1111a=4444 lớn hơn tổng của cả 4 số hạng nên không thể, nếu a=2 thì từ (1) ta thấy b+a \geq20 mà không có 2 số tự nhiên có 1 chữ số nào có tổng \geq20 nên cũng không thể, vậỵ a=3;
- Do a=3 nên ta có: 1111.3+111b+11c+d = 4321 hay 111b+11c+d = 4321-3333 = 988 (3)
Từ (3) ta thấy b phải nhỏ hơn 9 vì nếu b=9 thì số hạng 111b=999 lớn hơn tổng của cả 3 số hạng nên không thể; nếu a=7 thì từ (3) ta có 777+11c+d = 988 hay 11c+d = 211 (4), không thể tồn tại số tự nhiên c và d để thỏa mãn (4) nên b = 8;
- Do b=8 nên từ (3) có: 111.8+11c+d = 988 hay 11c+d = 100 (5)
Từ (5) ta thấy c không thể bằng 8 vì không tồn tại 88+d = 100 với d là số tự nhiên có 1 chữ số, do vậy c = 9;
- Do c = 9 nên từ (5) ta có d = 1.
Số các số cần tìm là: a = 3, b = 8, c = 9 và d = 1.