Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gợi ý: Giả sử \(c\le d\)
Ta có: \(0< a+b\le18\)
\(\Leftrightarrow0< cd\le18\)
\(\Rightarrow c^2\le cd\le18\)
\(\Rightarrow0< c\le4\)
Thế c = 1 vào ta được
\(\hept{\begin{cases}a+b=d\\1+d=ab\end{cases}}\)
\(\Rightarrow1+a+b=ab\)
\(\Leftrightarrow\left(a-1\right)\left(b-1\right)=2\)
\(\Rightarrow\left(a-1,b-1\right)=\left(1,2;2,1\right)\)
\(\Rightarrow\left(a,b\right)=\left(2,3;3,2\right)\)
\(\Rightarrow\hept{\begin{cases}d=4\\d=2\end{cases}\left(l\right)}\)
Tương tự các trường hợp còn lại
Ta có :
\(\overline{a,b}.\overline{ab,a}=\overline{ab,ab}\)
\(\Leftrightarrow\)\(\left(\overline{a,b}.10\right)\left(\overline{ab,a}.10\right)=\overline{ab,ab}.100\)
\(\Leftrightarrow\)\(\overline{ab}.\overline{aba}=\overline{abab}\)
\(\Leftrightarrow\)\(\overline{ab}.\overline{aba}=\overline{ab}.\left(100+1\right)\)
\(\Leftrightarrow\)\(\overline{aba}=101\)
\(\Rightarrow\)\(a=1\)\(;\)\(b=0\)
Vậy \(a=1\) và \(b=0\)
Bài 2 :
a) \(10\le\overline{a_7a_8}\le31\) để \(100\le\left(\overline{a_7a_8}\right)^2\le999\) là số có ba chữ số.
Với mỗi số trong khoảng \(\left\{10;11;12;...;31\right\}\) ta lại có một số \(\overline{a_1a_2a_3}\) khác nhau; còn a4; a5; a6 tùy ý.
b) Trước hết : \(23\le\overline{a_7a_8}\le46\)
Trước hết để a7a8 khi lập phương lên sẽ vẫn có chữ số tận cùng ban đầu thì \(a_8\in\left\{0;1;4;5;6;9\right\}\)
Giả sử a8 = 0 thì số a4a5a6a7a8 chia hết cho 103 = 1000; hay a7 phải bằng 0; loại.
Nếu a8 = 1 thì xét \(23\le\overline{a_7a_8}\le46\) có số 31 không thỏa mãn.
Tương tự xét các trường hợp còn lại khi đã có giới hạn \(23\le\overline{a_7a_8}\le46\).
Bài 1 :
Không đủ dữ kiện.
Ngộ nhỡ m = n = 2 thì điều phải chứng minh là sai.
(gt) <=> 38 + c + d chia hết cho 5
nên A = 38 + c + d phải có chữ số tận cùng là 0 hoặc 5
vì c,d là các chữ số => 0 =< c,d < 10
=> A = 38 + c + d < 58
=> A thuộc {40;45;50;55} (do A chia hết cho 5)
=> c + d = {2;7;12;17}
Q = 65c3596d4
*Điều kiện cần và đủ(thử lại)
Q tận cùng là 4 nên số hàng chục phải là số chẵn
d thuộc {2;4;6;8}
d = 2 => c thuộc {0;5}, thử c => loại
d = 4 => c thuộc {3;8}, thử c => loại
d = 6 => c thuộc {1;6}, thử c => loại
d = 8 => c thuộc {4;9}, thử c => nhận giá trị c = 9
Vậy có 1 nghiệm thỏa là : c = 9; d = 8 khi đó Q = 659359684 = 25678^2
Nguồn: Yahoo
do a chính phương nên a = 1,4 hoặc 9.Do đó \(\overline{ad}\) bằng 16 hya 49.
suy ra \(\overline{cd}\) bằng 16,36 hay 49.từ những điều này ta có a=1 hoặc a=4.vậy \(\overline{abcd}\) có dạng \(\overline{1b16},\overline{1b36},\overline{1b49},\overline{4b16},\overline{4b36},\overline{4b49}\) trong này chỉ có 1936 là số chính phương.
Vậy,...