Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(S=1+\frac{1}{1!}+\frac{1}{2!}+...+\frac{1}{2001!}\)
\(=2+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2001!}\)
Ta lại có:
\(\frac{1}{2!}=\frac{1}{1.2}\)
\(\frac{1}{3!}<\frac{1}{2.3}\)
\(...\)
\(\frac{1}{2001!}<\frac{1}{2000.2001}\)
\(\Rightarrow\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2001!}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2000.2001}\)
\(\Rightarrow\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2001!}<1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2000}-\frac{1}{2001}\)
\(\Rightarrow\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2001!}<1-\frac{1}{2001}=\frac{2000}{2001}<1\)
\(\Rightarrow\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2001!}<1\)
\(\Rightarrow\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2001!}\right)+2<1+2\)
\(\Rightarrow1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2001!}<3\)
\(\frac{ }{abc}\) \(=\frac{ }{ab}\)\(\frac{ }{.ac}\)\(\frac{ }{.7}\)
<=> a.100+b.10+c=(a.10+b).(a.10+c).7
<=> a.100+b.10+c=[(a.10+b).a.10+(a.10+b).c].7
<=> a.100+b.10+c=(a2.100+b.a.10+a.10.c+b.c).7
<=> a.100+b.10+c=[(a2.100+a.10)+(b.a.10+b.c)].7
......
Gỉai:
1.(ab + ba ) chia hết cho 9
=>9 : ab +ba
=>ab = một số ba=một số
=>Mà ba = 1 số
=>Vậy ba và ab vẫn =9
Hai số bằng nhau
Tương tự nhé
P.s:Not chắc
1,\(a,\overline{aaa}\div a=111\)
\(b,\overline{abab}\div\overline{ab}=101\)
\(c,\overline{abc}\cdot\overline{abc}\div\overline{abc}=\overline{abc}\)
2, Giẩi
Ta gọi số đó là abc
Khi viết thêm được abcabc
Ta có :
abcabc : 7 : 11 : 13 = abc
=> abc x 11 x 7 x 13 = abcabc
=> abc x 1001 = abcabc
Vì quy ước abc x 1001 = abcabc nên mk đã chứg minh thành công
ab x c = ddd
b x b = d nên d chỉ có thể là 4 ; 6 hoặc 9, khi đó b sẽ là 2 ; 4 ; 3 hoặc 7.
Vì hai thừa số là số có 2 chữ số và tích có hai chữ số bằng nhau, nên chữ số hàng chục sẽ bé hơn chữ số hàng đơn vị. Vì vậy ta chọn b = 7 => d = 9.
Nếu b = 7 và d = 9 ta có :
a7 x c = 999 => a = 2; b = 3
\(abc+2=11×ab\)
\(ab×10+c+2=11×ab\)
\(c+2=ab\)
Vì \(c\)là chữ số mà \(ab\)là số có 2 chữ số nên \(c\)chỉ nhận các giá trị là: 8 và 9
Ta có 2 TH sau:
TH1: \(c=8\)
\(\Rightarrow ab=8+2=10\)
TH2: \(c=9\)
\(\Rightarrow ab=9+2=11\)
Vậy ta có 2 cặp \(\left(a,b,c\right)\)là \(\left(1,0,8\right);\left(1,1,9\right)\)