K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2019

abc - ac = 2.cb + bc

= abc - ac - 2cb - bc = 0

= abc - ac - 3bc = 0

= c ( ab - a - 3b ) = 0

= c = 0 hoặc ab - a - 3b = 0

c = 0 nên vế trái và phải bằng 0

=> c = 0 và a , b thuộc Q

~ Học tốt ~

trả  lời 

c=0

a,b thuộc q

chúc bn học tốt

30 tháng 6 2017

a) ĐỊnh lí Carnot ( Các -nô )
b) Ta có : \(2T = AB'^2 + A'C^2 + AB'^2 +B'C^2 +AC'^2 + BC'^2 \geq \frac{1}{2} ( ( A'B + A'C)^2 + (C'A +C'B )^2 + (B'A +B'C)^2 ) = \frac{1}{2} ( AB^2 +AC^2 + BC^2 )/)
O là trọng , trực,.. tâm của tam giá và tam giác đó đều .
Chúc em học tốt, thân!

30 tháng 6 2017

áp dụng bất đẳng thức côsi

a+b >= 2\(\sqrt{ab}\)

<=> (a+b).\(\sqrt{c}\)>=2.\(\sqrt{abc}\)                      

Mà \(\sqrt{abc}\)= (a+b) .\(\sqrt{c}\) nên a=b , \(\sqrt{c}\)= 2.\(\sqrt{c}\) 

<=> c = 0 và với mọi a,b 

30 tháng 6 2017

bạn Nguyễn Anh Quân hiểu sai rồi, là \(\sqrt{\overline{abc}}\)  chứ ko phải  \(\sqrt{abc}\)  đâu nha

7 tháng 11 2017

GT => (a+1)(b+1)(c+1)=(a+1)+(b+1)+(c+1)

Đặt \(\frac{1}{a+1}=x,\frac{1}{1+b}=y,\frac{1}{c+1}=z\), ta cần tìm min của\(\frac{x}{x^2+1}+\frac{y}{y^2+1}+\frac{z}{z^2+1}\)với xy+yz+zx=1

\(\Leftrightarrow\frac{x\left(y+z\right)+y\left(z+x\right)+z\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\Leftrightarrow\frac{2}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)Mà  (x+y)(y+z)(z+x) >= 8/9 (x+y+z)(xy+yz+xz) >= \(\frac{8\sqrt{3}}{9}\) nên \(M\)=< \(\frac{3\sqrt{3}}{4}\),dấu bằng xảy ra khi a=b=c=\(\sqrt{3}-1\)

2 tháng 6 2020

Theo giả thiết, ta có: \(abc+ab+bc+ca=2\)

\(\Leftrightarrow abc+ab+bc+ca+a+b+c+1=a+b+c+3\)

\(\Leftrightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)=\left(a+1\right)+\left(b+1\right)+\left(c+1\right)\)

\(\Leftrightarrow\frac{1}{\left(a+1\right)\left(b+1\right)}+\frac{1}{\left(b+1\right)\left(c+1\right)}+\frac{1}{\left(c+1\right)\left(a+1\right)}=1\)

Đặt \(\left(a+1;b+1;c+1\right)\rightarrow\left(\frac{\sqrt{3}}{x};\frac{\sqrt{3}}{y};\frac{\sqrt{3}}{z}\right)\). Khi đó giả thiết bài toán được viết lại thành xy + yz + zx = 3 

Ta có: \(M=\Sigma_{cyc}\frac{a+1}{a^2+2a+2}=\Sigma_{cyc}\frac{a+1}{\left(a+1\right)^2+1}\)\(=\Sigma_{cyc}\frac{1}{a+1+\frac{1}{a+1}}=\Sigma_{cyc}\frac{1}{\frac{\sqrt{3}}{x}+\frac{x}{\sqrt{3}}}\)

\(=\sqrt{3}\left(\frac{x}{x^2+3}+\frac{y}{y^2+3}+\frac{z}{z^2+3}\right)\)

\(=\sqrt{3}\text{​​}\Sigma_{cyc}\left(\frac{x}{x^2+xy+yz+zx}\right)=\sqrt{3}\Sigma_{cyc}\frac{x}{\left(x+y\right)\left(x+z\right)}\)

\(\le\frac{\sqrt{3}}{4}\Sigma_{cyc}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)=\frac{3\sqrt{3}}{4}\)

Đẳng thức xảy ra khi \(x=y=z=1\)hay \(a=b=c=\sqrt{3}-1\)

29 tháng 3 2020

Ta có \(\frac{a}{a+1}=\left(1-\frac{b}{1+b}\right)+\left(1-\frac{c}{1+c}\right)=\frac{1}{1+b}+\frac{1}{1+c}\ge2\sqrt{\frac{1}{\left(1+b\right)\left(1+c\right)}}\left(1\right)\)

CMTT \(\frac{b}{b+1}\ge2\sqrt{\frac{1}{\left(1+a\right)\left(1+c\right)}}\left(2\right)\)

\(\frac{c}{c+1}\ge2\sqrt{\frac{1}{\left(a+1\right)\left(b+1\right)}}\left(3\right)\)

Nhân các vế của (1);(2);(3) 

=> \(abc\ge8\)

=> \(ab+bc+ac\ge3\sqrt[3]{a^2b^2c^2}\ge12\)

=> \(Min\left(ab+bc+ac\right)=12\)khi \(a=b=c=2\)

12 tháng 4 2020

Theo gt ta có:

\(\frac{a}{a+1}=1-\frac{b}{b+1}+1-\frac{c}{c+1}=\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{2}{\sqrt{\left(b+1\right)\left(c+1\right)}}\)

Cmtt ta có: \(\frac{b}{b+1}\ge\frac{2}{\sqrt{\left(a+1\right)\left(c+1\right)}}\)

Nhân theo vế của BĐT trên ta được

\(\frac{ab}{\left(a+1\right)\left(b+1\right)}\ge\frac{4}{\left(c+1\right)\sqrt{\left(a+1\right)\left(b+1\right)}}\)

\(\Leftrightarrow ab\ge\frac{4\sqrt{\left(a+1\right)\left(b+1\right)}}{c+1}\)

Tương tự cũng có: \(\hept{\begin{cases}bc\ge\frac{4\sqrt{\left(b+1\right)\left(c+1\right)}}{a+1}\\ca\ge\frac{4\sqrt{\left(c+1\right)\left(a+1\right)}}{b+1}\end{cases}}\)

Cộng lại theo vế 3 BĐT trên và sủ dụng AM-GM ta được

\(P=ab+bc+ca\ge12\)

Dấu "=" xảy ra <=> a=b=c=2

11 tháng 10 2019

a b c la : nhau vay a 2 b 5 c 9

11 tháng 10 2019

dap an laf a 4  b 6c 14

22 tháng 9 2019

Bài 3: Full 2 cách (sai chỗ nào nhắn em cái,và ko biết ad đã fix lỗi ko dán đc link bên h vào chưa, nếu chưa thì ib em gửi full link):

Câu hỏi của Phạm Hoàng Lê Nguyên - Toán lớp 1 | Học trực tuyến

22 tháng 9 2019

Bài 3: \(P=\Sigma\frac{a}{a^2+bc}\le\frac{1}{2}.\Sigma\frac{1}{\sqrt{bc}}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=\frac{1}{2}\left(\frac{ab+bc+ca}{abc}\right)\le\frac{1}{2}.\frac{a^2+b^2+c^2}{abc}=\frac{1}{2}\)

Vậy...

P/s: Sai /thắc mắc chỗ nào thì nhắn hộ em cái chứ đừng tk sai:P