Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta có:
\(\left(100a+3b+1\right)\left(2^a+10a+b\right)=225\left(1\right)\)
Mà \(225\) lẻ nên \(\left\{{}\begin{matrix}100a+3b+1\\2^a+10a+b\end{matrix}\right.\) cùng lẻ \(\left(2\right)\)
\(*)\) Với \(a=0\) ta có:
Từ \(\left(1\right)\Leftrightarrow\left(100.0+3b+1\right)\left(2^a+10.0+b\right)=225\)
\(\Leftrightarrow\left(3b+1\right)\left(1+b\right)=225=3^2.5^2\)
Do \(3b+1\div3\) dư \(1\) và \(3b+1>1+b\)
Nên \(\left(3b+1\right)\left(1+b\right)=25.9\) \(\Rightarrow\left\{{}\begin{matrix}3b+1=25\\1+b=9\end{matrix}\right.\) \(\Leftrightarrow b=8\)
\(*)\) Với \(a\ne0\left(a\in N\right)\) ta có:
Khi đó \(100a\) chẵn, từ \(\left(2\right)\Rightarrow3b+1\) lẻ \(\Rightarrow b\) chẵn
\(\Rightarrow2^a+10a+b\) chẵn, trái với \(\left(2\right)\) nên \(b\in\varnothing\)
Vậy \(\left\{{}\begin{matrix}a=0\\b=8\end{matrix}\right.\)
Bài 2:
Ta có:
\(A=\dfrac{1}{1+3}+\dfrac{1}{1+3+5}+...+\dfrac{1}{1+3+...+2017}\)
\(=\dfrac{1}{\dfrac{\left(1+3\right).2}{2}}+\dfrac{1}{\dfrac{\left(1+5\right).3}{2}}+...+\dfrac{1}{\dfrac{\left(1+2017\right).1009}{2}}\)
\(=\dfrac{2}{2.4}+\dfrac{2}{3.6}+\dfrac{2}{4.8}+...+\dfrac{2}{1009.2018}\)
\(=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{1009.1009}\)
\(\Rightarrow A< \dfrac{1}{2.2}+\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{1008.1009}\right)\)
\(\Rightarrow A< \dfrac{1}{4}+\left(\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{1008}-\dfrac{1}{1009}\right)\)
\(\Rightarrow A< \dfrac{1}{4}+\left(\dfrac{1}{2}-\dfrac{1}{1009}\right)\)
\(\Rightarrow A< \dfrac{1}{4}+\dfrac{1}{2}=\dfrac{3}{4}\) (Đpcm)
a ,mẫu số chung nhỏ nhất là 35
b,mẫu số chung nhỏ nhất là 75
c,mẫu số chung nhỏ nhất là 24
a ,mẫu số chung nhỏ nhất là 35
b,mẫu số chung nhỏ nhất là 75
c,mẫu số chung nhỏ nhất là 24
a) \(\dfrac{1}{6};\dfrac{1}{3};\dfrac{1}{2};...\)
\(\Rightarrow\dfrac{1}{6};\dfrac{2}{6};\dfrac{3}{6};...\)
Dãy có quy luật tăng dần lên 1 đơn vị ở tử số
\(\Rightarrow\) Số tiếp theo của dãy là: \(\dfrac{4}{6}\)
b) \(\dfrac{1}{8};\dfrac{5}{24};\dfrac{7}{24};...\)
\(\Rightarrow\dfrac{3}{24};\dfrac{5}{24};\dfrac{7}{24};...\)
Dãy có quy luật tăng dần lên 2 đơn vị ở tử số
\(\Rightarrow\) Số tiếp theo của dãy là: \(\dfrac{9}{24}\)
c) \(\dfrac{1}{5};\dfrac{1}{4};\dfrac{1}{3};...\)
\(\dfrac{4}{20};\dfrac{5}{20};\dfrac{6}{20};...\)
Dãy có quy luật tăng dần lên 1 đơn vị ở tử số
\(\Rightarrow\) Số tiếp theo của dãy là: \(\dfrac{7}{20}\)
d) \(\dfrac{4}{15};\dfrac{3}{10};\dfrac{1}{3};...\)
\(\Rightarrow\dfrac{8}{30};\dfrac{9}{30};\dfrac{11}{30};...\)
Dãy có quy luật tăng dần lên 1 đơn vị ở tử số
\(\Rightarrow\) Số tiếp theo của dãy là: \(\dfrac{12}{30}\)
Bài 3 :
a) \(A=\dfrac{1}{3.5}+\dfrac{1}{5.7}+...........+\dfrac{1}{2017.2019}\)
\(\Leftrightarrow2A=\dfrac{2}{3.5}+\dfrac{2}{5.7}+.........+\dfrac{2}{2017.2019}\)
\(\Leftrightarrow2A=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+......+\dfrac{1}{2017}-\dfrac{1}{2019}\)
\(\Leftrightarrow2A=\dfrac{1}{3}-\dfrac{1}{2019}\)
\(\Leftrightarrow2A=\dfrac{672}{2019}\)
\(\Leftrightarrow A=\dfrac{336}{2019}\)
b) \(B=\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+.........+\dfrac{1}{132}\)
\(\Leftrightarrow B=\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+............+\dfrac{1}{11.12}\)
\(\Leftrightarrow B=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+......+\dfrac{1}{11}-\dfrac{1}{12}\)
\(\Leftrightarrow B=\dfrac{1}{2}-\dfrac{1}{12}=\dfrac{5}{12}\)
1.
Để \(\overline{25a89b}⋮2\Rightarrow b\in\left\{0;2;4;6;8\right\}\)
Để \(\overline{25a89b}\) chia 5 dư 3 \(\Rightarrow b\in\left\{3;8\right\}\)
Để thỏa mãn hai điều kiện trên thì \(b=8\)
Để \(\overline{25a898}⋮9\Rightarrow\left(2+5+a+8+9+8\right)⋮9\Leftrightarrow32+a⋮9\Rightarrow a=4\)
Vậy \(a=4;b=8\); số cần tìm là \(254898\)
a) Ta có :
\(\dfrac{1}{a}=\dfrac{1}{6}+\dfrac{b}{3}\)
\(\Rightarrow\dfrac{1}{a}=\dfrac{1}{6}+\dfrac{2b}{6}\)
\(\Rightarrow\dfrac{1}{a}=\dfrac{1+2b}{6}\)
\(\Rightarrow6=\left(1+2b\right)a\)
Vì \(a,b\in Z\Rightarrow1+2b\in Z;1+2b,a\inƯ\left(6\right)\)
Sau đó lập bảng rồi tính các giá trị của a,b thôi bn!
b) Ta có :
\(\dfrac{a}{4}-\dfrac{1}{b}=\dfrac{3}{4}\)
\(\Rightarrow\dfrac{a}{4}-\dfrac{3}{4}=\dfrac{1}{b}\)
\(\Rightarrow\dfrac{a-3}{4}=\dfrac{1}{b}\)
\(\Rightarrow\left(a-3\right)b=4\)
Vì \(a,b\in Z\Rightarrow a-3\in Z\) và \(a-3;b\inƯ\left(4\right)\)
Sau đó lập bảng rồi tính các giá trị của a,b là xong!
Áp dụng tính chất phân phối, rồi tính giá trị biểu thức.
Chẳng hạn,
Với , thì
ĐS. ; C = 0.
Xem thêm tại: http://loigiaihay.com/bai-77-trang-39-phan-so-hoc-sgk-toan-6-tap-2-c41a5943.html#ixzz4eU1fQCGw
a,\(\dfrac{x}{3}-\dfrac{1}{y}=\dfrac{1}{2}\)
=> \(\dfrac{1}{y}=\dfrac{x}{3}-\dfrac{1}{2}=>\dfrac{1}{y}=\dfrac{2x-3}{6}\)
=> y(2x-3)=6.1=6
=> y và 2x-3 là Ư (6)= {+-1,+-2,+-3,+-6}
2x-3 | -1 | 1 | 2 | -2 | 3 | -3 | 6 | -6 |
x | 1 | 2 | 2,5 | 1/2 | 3 | 0 | 9/2 | -3/2 |
y | -6 | 6 | 3 | -3 | 2 | -2 | 1 |
-1 |
vậy (x;y)= .......................
b,c làm tương tự
chúc bn học tốt
a = -2, b = 6
a = -6, b = 2
nếu là số TN thì
a = 4, b = 12
a = 12, b = 4