Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\hept{\begin{cases}\left(5x-y\right)^{2016}\ge0\\\left|x^2-4\right|^{2017}\ge0\end{cases}\Rightarrow\left(5x-y\right)^{2016}+\left|x^2-4\right|\ge}0\)
Mà \(\left(5x-y\right)^{2016}+\left|x^2-4\right|^{2017}\le0\)
\(\Rightarrow\hept{\begin{cases}\left(5x-y\right)^{2016}=0\\\left|x^2-4\right|^{2017}=0\end{cases}\Rightarrow\hept{\begin{cases}5x-y=0\\x^2-4=0\end{cases}}\Rightarrow\hept{\begin{cases}y=\pm10\\x=\pm2\end{cases}}}\)
Vậy các cặp (x;y) là (2;10);(-2;-10)
\(\left(\frac{2x-3}{4}\right)^{2014}+\left(\frac{3y+4}{5}\right)^{2016}=0\)
Có: \(\left(\frac{2x-3}{4}\right)^{2014}\ge0;\left(\frac{3y+4}{5}\right)^{2016}\ge0\)
Mà theo bài ra: \(\left(\frac{2x-3}{4}\right)^{2014}+\left(\frac{3y+4}{5}\right)^{2016}=0\)
\(\Rightarrow\hept{\begin{cases}\frac{2x-3}{4}=0\\\frac{3y+4}{5}=0\end{cases}}\Rightarrow\hept{\begin{cases}2x-3=0\\3y+4=0\end{cases}}\Rightarrow\hept{\begin{cases}2x=3\\3y=-4\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=-\frac{4}{3}\end{cases}}\)
Vậy: \(\hept{\begin{cases}x=\frac{3}{2}\\y=-\frac{4}{3}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{2x-3}{4}=0\\\frac{3y+4}{5}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=-\frac{4}{3}\end{cases}}}\)
a) Ta có : \(\left|x\right|+\left|y\right|=10\)
+) Xét |x| + |y| = x + y = 10
Ta lần lượt đếm từng cặp :
0 + 10 = 10
1 + 9 = 10
2 + 8 = 10
3 + 7 = 10
4 + 6 = 10
5 + 5 = 10
6 + 4= 10
7 + 3 = 10
8 + 2 = 10
9 + 1 = 10
10 + 0 = 10
=> Có 20 cặp số
+) TH âm cũng có thêm 20 cặp số
<=> 20 cặp số + 20 cặp số = 40 cặp số
b) Nếu x = 0 thì \(y=0;\pm1;\pm2;...;\pm9\)gồm 19 giá trị.Nếu x = \(\pm1\)thì y = \(0;\pm1;\pm2;...;\pm8\),có 17 giá trị...Nếu x = \(\pm8\)thì \(y=0;\pm1\). Nếu x = \(\pm19\)thì y = 0 ,gồm 1 giá trị
Có tất cả : \(2\left(1+3+...+17\right)+19=z\)(đặt z là số cần tìm)
Số số hạng là : \(\left(17-1\right):2+1=9\)
Tổng của dãy ngoặc trên là \(\left(17+1\right)\cdot9:2=81\)
=> \(2\cdot81+19=z\)
=> \(162+19=181=z\)
Vậy có tất cả 181 cặp số.
ta có:
(x-3)^2012 > 0 với mọi x
(3y-12)^2014 > 0 với mọi y
=>(x-3)^2012+(3y-12)^2014 > 0 với mọi x;y
mà theo đề:(x-3)^2012+(3y-12)^2014 < 0
=>(x-3)^2012=(3y-12)^2014=0
=>x-3=3y-12=0
=>x=3;y=4
vậy (x;y)=(3;4)
tick nhé,bài chuẩn đấy
a) \(x.\left(y+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\y+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\y=-1\end{cases}}}\)
b) \(\left(x-2\right).y=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\y=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\y=0\end{cases}}}\)
c) \(\left(x+2\right)^2+\left(y-3\right)^2=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x+2\right)^2=0\\\left(y-3\right)^2=0\end{cases}\Rightarrow\orbr{\begin{cases}x+2=0\\y-3=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-2\\y=3\end{cases}}}\)
a, x.(y+1)=0
=> x=0
hoặc y+1=0=> y=-1
b,(x-2).y=0
=> x-2=0=> x=2
hoặc y=0
c,nhận xét ta thấy (x+2)2 >=0
và (y-3)2>= 0
nên (x+2)2+(y-3)2>=0
dấu bằng xảy ra khi và chỉ khi
x+2=0=> x=-2
và y-3=0=> y=3
BỐ MÀY ĐƠ CU