Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) 5x2 +5y2 +8xy + 2x-2y+2 = 0
(x2 +2x+1) + (y2 -2y+1) + (4x2 +8xy + 4y2) = 0
(x+1)2 + (y-1)2 +(2x+2y)2 = 0
=> (x+1)2 = 0 => x = -1
(y-1)2 = 0 => y = 1
(2x+2y)2 = 0
KL: x = -1; y = 1
a) 3x2 +5y2 = 345
=> x2 chia hết cho 5
=> x chia hết cho 5
đặt x = 5t=> 75t2+5y2 =345⇒15t2+y2 =69⇒y chia hết cho 3
đặt y = 3z => 15t2+9z2 =69
⇒5t2 +3z2 =23
...
a) 2xy - 3x + 5y = 4
=> 2(2xy - 3x + 5y) = 8
=> 4xy + 6x + 10y = 8
=> 2x(2y + 3) + 5(2y + 3) = 23
=> (2x + 5)(2y + 3) = 23
=> 2x + 5; 2y + 3 \(\in\)Ư(23) = {1; -1; 23; -23}
Lập bảng:
2x + 5 | 1 | -1 | 23 | -23 |
2y + 3 | 23 | -23 | 1 | -1 |
x | -2 | -3 | 9 | -14 |
y | 10 | -13 | -1 | -2 |
Vậy ...
1.
PT $\Leftrightarrow 4x^2+4x+1=y^3+y^2+y+1$
$\Leftrightarrow (2x+1)^2=(y^2+1)(y+1)$
Gọi $d=(y^2+1, y+1)$
$\Rightarrow y^2+1\vdots d; y+1\vdots d$
$\Rightarrow y(y+1)-(y^2+1)\vdots d$ hay $y-1\vdots d$
$\Rightarrow (y+1)-(y-1)\vdots d\Rightarrow 2\vdots d$
$\Rightarrow d=1,2$
Nếu $d=2$ thfi $(2x+1)^2\vdots 2$ (vô lý do $2x+1$ lẻ)
$\Rightarrow d=1$
Tức là $(y^2+1, y+1)=1$. Mà tích của chúng là 1 scp nên mỗi số
$y^2+1, y+1$ cũng là scp
Đặt $y^2+1=a^2; y+1=b^2$
$\Rightarrow (b^2-1)^2+1=a^2$
$\Leftrightarrow 1=a^2-(b^2-1)^2=(a-b^2+1)(a+b^2-1)$
$\Rightarrow a-b^2+1=a+b^2+1=1$ hoặc $a-b^2+1=a+b^2+1=-1$
Cả 2 TH đều suy ra $y=0$
$\Rightarrow 4x^2+4x=0\Rightarrow x=0$ hoặc $x=-1$
2.
$x^4+2x^2=y^3$
$\Leftrightarrow (x^2+1)^2=y^3+1=(y+1)(y^2-y+1)$
Đặt $d=(y+1, y^2-y+1)$
$\Rightarrow y+1\vdots d; y^2-y+1\vdots d$
$\Rightarrow (y+1)^2-(y^2-y+1)\vdots d$
$\Rightarrow 3y\vdots d$
Nếu $d\vdots 3$ thì $x^2+1\vdots 3$. Điều này vô lý do 1 scp khi chia 3 dư 0 hoặc 1,
$\Rightarrow x^2+1$ khi chia cho $3$ dư $2$ hoặc $1$ (tức là không chia hết cho 3)
Do đó $d$ và $3$ nguyên tố cùng nhau. Khi đó từ $3y\vdots d$
$\Rightarrow y\vdots d$
Kết hợp với $y+1\vdots d\Rightarrow 1\vdots d\Rightarrow d=1$
$\Rightarrow (y+1, y^2-y+1)=1$. Mà tích của chúng là scp nên mỗi số
$y+1, y^2-y+1$ cũng là scp
Đặt $y+1=a^2; y^2-y+1=b^2$ với $a,b\in\mathbb{N}$
Có:
$y^2-y+1=b^2$
$\Leftrightarrow (2y-1)^2+3=(2b)^2$
$\Leftrightarrow 3=(2b-2y+1)(2b+2y-1)$
Đây là dạng pt tích đơn giản và ta tìm được $y=0$ hoặc $y=1$
Thay vô pt ban đầu thì có cặp $(x,y)=(0,0)$
Bài đã đăng rồi thì bạn không nên đăng lặp lại nữa, tránh gây loãng box toán.
vì 6x2 và 74 \(⋮2\)
=> 5y2 \(⋮2\)
=> y2 \(⋮2\)( vì (5,2) = 1 )
=> y = 2 ( vì 2 là số nguyên tố chẵn duy nhất )
thay y = 2 vào bài ta được:
6x2 + 5.4 = 74
6x2 = 54
x2 = 9
=> x = 3
vậy x = 3 và y = 2
6x2 + 5y2 = 74 (1)
Ta có : 5x2 + 5y2 =< 6x2 + 5y2 =< 6x2 + 6y2
<=> 5(x2 + y2) =< 74 =< 6(x2 + y2)
<=> 12,3 =< x2 + y2 =< 14,8
<=> 13 =< x2 + y2 =< 14 (vì x, y tự nhiên => x2 + y2 tự nhiên)
Trường hợp 1 : x2 + y2 = 13 (2)
Ta có hệ :
6x2 + 5y2 = 74 (1)
x2 + y2 = 13 (2)
<=> 6x2 + 5y2 = 74
5x2 + 5y2 = 65
Trừ 2 phương trình : x2 = 9 <=> x = 3 (vì x >= 0)
Thay vào (2) y2 = 13 - x2 = 13 - 9 = 4 <=> x = 2
Nghiệm : (x ; y) = (2 ; 3)
Trường hợp 2 : x2 + y2 = 14 (4)
Ta có hệ :
6x2 + 5y2 = 74 (1)
x2 + y2 = 14 (3)
<=> 6x2 + 5y2 = 74
5x2 + 5y2 = 70
Trừ 2 phương trình : x2 = 4 <=> x = 2
Thay vào (3) : y2 = 14 - 4 = 10 <=> y = \(\sqrt{10}\) (loại)
Vậy phương trình có nghiệm nguyên duy nhất là (x ; y) = (2 ; 3) .
Ta có:
\(6x^2+5y^2=74\left(1\right)\)
Từ \(\left(1\right)\Rightarrow\hept{\begin{cases}x^2+1⋮5\\0< x^2\le12\end{cases}\Rightarrow\orbr{\begin{cases}x^2=4\\x^2=9\end{cases}}}\)
Với \(x^2=4\Rightarrow y^2=10\) (loại)
Với \(x^2=9\Rightarrow y^2=4\) (thỏa mãn)
\(\Rightarrow\hept{\begin{cases}x^2=9\\y^2=4\end{cases}\Rightarrow\hept{\begin{cases}x=\sqrt{9}\\y=\sqrt{4}\end{cases}\Rightarrow}\hept{\begin{cases}x=\left(-3;3\right)\\y=\left(-2;2\right)\end{cases}}}\)
Vậy...