K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2019

LINK THAM KHẢO

https://olm.vn/hoi-dap/detail/101095140158.html

11 tháng 5 2019

\(x^2+x+3=y^2\)

\(\Leftrightarrow4x^2+4x+12=4y^2\)

\(\Leftrightarrow\left(4x^2+4x+1\right)-4y^2=-11\)

\(\Leftrightarrow\left(2x+1\right)^2-\left(2y\right)^2=-11\)

\(\Leftrightarrow\left(2x+1-2y\right)\left(2x+y+2y\right)=-11=\left(-1\right)\cdot11=11\cdot\left(-1\right)=1\cdot\left(-11\right)=\left(-11\right)\cdot1\)

Đến đây bạn tự làm nốt nhá.tớ làm thử cho 1 TH tham khảo nhé !

\(\hept{\begin{cases}2x+1-2y=-1\\2x+1+2y=11\end{cases}}\Rightarrow\hept{\begin{cases}x-y=-1\\x+y=5\end{cases}}\Rightarrow x=2\Rightarrow y=3\)

Còn lại tương tự:3

27 tháng 3 2020

Bài 1 : 

Phương trình <=> 2x . x2 = ( 3y + 1 ) + 15

Vì \(\hept{\begin{cases}3y+1\equiv1\left(mod3\right)\\15\equiv0\left(mod3\right)\end{cases}\Rightarrow\left(3y+1\right)^2+15\equiv1\left(mod3\right)}\)

\(\Rightarrow2^x.x^2\equiv1\left(mod3\right)\Rightarrow x^2\equiv1\left(mod3\right)\)

( Vì số  chính phương chia 3 dư 0 hoặc 1 ) 

\(\Rightarrow2^x\equiv1\left(mod3\right)\Rightarrow x\equiv2k\left(k\inℕ\right)\)

Vậy \(2^{2k}.\left(2k\right)^2-\left(3y+1\right)^2=15\Leftrightarrow\left(2^k.2.k-3y-1\right).\left(2^k.2k+3y+1\right)=15\)

Vì y ,k \(\inℕ\)nên 2k . 2k + 3y + 1 > 2k .2k - 3y-1>0

Vậy ta có các trường hợp: 

\(+\hept{\begin{cases}2k.2k-3y-1=1\\2k.2k+3y+1=15\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=8\\3y+1=7\end{cases}\Rightarrow}k\notinℕ\left(L\right)}\)

\(+,\hept{\begin{cases}2k.2k-3y-1=3\\2k.2k+3y+1=5\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=4\\3y+1=1\end{cases}\Rightarrow}\hept{\begin{cases}k=1\\y=0\end{cases}\left(TM\right)}}\)

Vậy ( x ; y ) =( 2 ; 0 ) 

27 tháng 3 2020

Bài 3: 

Giả sử \(5^p-2^p=a^m\)    \(\left(a;m\inℕ,a,m\ge2\right)\)

Với \(p=2\Rightarrow a^m=21\left(l\right)\)

Với \(p=3\Rightarrow a^m=117\left(l\right)\)

Với \(p>3\)nên p lẻ, ta có

\(5^p-2^p=3\left(5^{p-1}+2.5^{p-2}+...+2^{p-1}\right)\Rightarrow5^p-2^p=3^k\left(1\right)\)    \(\left(k\inℕ,k\ge2\right)\)

Mà \(5\equiv2\left(mod3\right)\Rightarrow5^x.2^{p-1-x}\equiv2^{p-1}\left(mod3\right),x=\overline{1,p-1}\)

\(\Rightarrow5^{p-1}+2.5^{p-2}+...+2^{p-1}\equiv p.2^{p-1}\left(mod3\right)\)

Vì p và \(2^{p-1}\)không chia hết cho 3 nên \(5^{p-1}+2.5^{p-2}+...+2^{p-1}⋮̸3\)

Do đó: \(5^p-2^p\ne3^k\), mâu thuẫn với (1). Suy ra giả sử là điều vô lý

\(\rightarrowĐPCM\)

9 tháng 12 2018

\(3xy+x+15y-44=0\)

\(3y\left(x+5\right)+\left(x+5\right)-49=0\)

\(\left(x+5\right)\left(3y+1\right)=49\)

Vì x;y là số nguyên \(\Rightarrow\hept{\begin{cases}x+5\in Z\\3y+1\in Z\end{cases}}\)

Có \(\left(x+5\right)\left(3y+1\right)=49\)

\(\Rightarrow\left(x+5\right)\left(3y+1\right)\in\text{Ư}\left(49\right)=\left\{\pm1;\pm7;\pm49\right\}\)

b tự lập bảng nhé~

26 tháng 7 2019

Có:

\(2x^2+1=y^2-yx^2\)

<=> \(x^2\left(y+2\right)=\left(y-1\right)\left(y+1\right)\)

=> \(x^2\left(y+2\right)⋮\left(y+1\right)\)mà y+1 và y+2 là hai số nguyên liên tiếp nên nguyên tố cùng nhau

=> \(x^2⋮\left(y+1\right)\)

Đặt: \(x^2=\left(y+1\right)t\)( t thuộc Z)

Ta có phương trình : \(t\left(y+2\right)=y-1\)

,+) Với y=-2 => y+2 =0 => y-1 =0 => y=1 vô lí

+) Với y khác -2

Chia ca hai vế cho y+2 ta có:

\(t=\frac{y-1}{y+2}=1-\frac{3}{y+2}\)

Tìm y để t thuộc Z

Ta có: y+2 thuộc U(3)={-3; -1; 1; 3}

+) y+2 =-3 => y=-5 => t=2 => x^2 =(y+1)t= -8 ( loại)

+) y+2 =-1 => y=-3 => t=2 => x^2 =(y+1)t= -4 ( loại)

+) y+2=1  => y=-1 => t=-2 => x^2= 0  => x=0 

+) y+2 =3 => y=1 => t=0 => x^2 =0  => x=0

THử lại thấy x=0; y=1 và x=0 ;y=-1 thỏa mãn

Vậy ...

28 tháng 8 2017

Giả sử x=2k+1. Khi đó: \(4^k.2-3^y=1\). ta thấy \(4^x\)chia 3 dư 1\(\Rightarrow\) \(4^x.2\)chia 3 dư 2\(\Rightarrow\)1 chia 3 dư 2 (vô lí)

Suy ra: x=2k. Khi đó: \(4^k-3^y=1\) .

Giả sử y=2q. Khi đó \(4^k-9^q=1\). Ta thấy \(9^q\)chia 4 dư 1 \(\Rightarrow\)1 chia 4 dư 3 (vô lí)

Suy ra: y lẻ. Ta có:\(4^k=3^y+1=4\left(3^{y-1}+3^{y-2}+...+1\right)\)

\(\Rightarrow4^{k-1}=3^{y-1}+3^{y-2}+...+1\)

Với k=1 thì x=2, y=1 (chọn)

Với k>1 thì 4k-1 chẵn

Mà \(3^{y-1}+3^{y-2}+...+1\)có y-1-0+1=y số lẻ mà y lẻ \(\Rightarrow3^{y-1}+3^{y-2}+...+1\)lẻ

Vậy dấu bằng không xảy ra.

Suy ra \(\left(x;y\right)=\left(2;1\right)\)

27 tháng 8 2017

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha

20 tháng 4 2019

\(\frac{x+y}{x^2+xy+y^2}=\frac{5}{19}\Leftrightarrow19\left(x+y\right)=5\left(x^2+xy+y^2\right)\) (*)

từ pt (*) ta thấy \(19\left(x+y\right)⋮5\) mà (19,5)=1 \(\Rightarrow x+y⋮5\Rightarrow x+y=5k\left(k\in Z\right)\)

Thay x+y=5k vào (*) ta được: \(x^2+xy+y^2=19k\) (1)

Lại có: \(x+y=5k\Leftrightarrow x^2+2xy+y^2=25k^2\) (2)

Lấy (2) - (1) ta có: \(xy=25k^2-19k\)

Xét \(\left(x+y\right)^2-4xy=\left(x-y\right)^2\ge0\Leftrightarrow25k^2-4\left(25k^2-19k\right)\ge0\Leftrightarrow75k^2-76k\le0\)

\(\Leftrightarrow0\le k\le\frac{76}{75}\Rightarrow k\in\left\{0;1\right\}\)

-Nếu k=0 thì \(\hept{\begin{cases}x+y=0\\xy=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}}\)

-Nếu k=1 thì \(\hept{\begin{cases}x+y=5\\xy=6\end{cases}\Leftrightarrow\left(x;y\right)=\left(2;3\right);\left(3;2\right)}\)

11 tháng 6 2020

\(< =>x^2-1=y^2+4y+4< =>x^2-1=\left(y+2\right)^2< =>\)\(x^2-\left(y+2\right)^2=1< =>\left(x+y+2\right)\left(x-y-2\right)=1< =>\)

\(\hept{\begin{cases}x-y-2=1\\x+y+2=1\end{cases}}\) hoặc \(\hept{\begin{cases}x-y-2=-1\\x+y+2=-1\end{cases}}\)<=> \(\hept{\begin{cases}x-y=3\\x+y=-1\end{cases}}\)hoặc \(\hept{\begin{cases}x-y=1\\x+y=-3\end{cases}}\)

<=> x=1, y= -2 hoặc x= -1, y= -2