Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Vì \(\left|x+\dfrac{1}{1.3}\right| \ge0;\left|x+\dfrac{1}{3.5}\right|\ge0;...;\left|x+\dfrac{1}{97.99}\right|\ge0\)
\(\Rightarrow50x\ge0\Rightarrow x\ge0\)
Khi đó: \(\left|x+\dfrac{1}{1.3}\right|=x+\dfrac{1}{1.3};\left|x+\dfrac{1}{3.5}\right|=x+\dfrac{1}{3.5};...;\left|x+\dfrac{1}{97.99}\right|=x+\dfrac{1}{97.99}\left(1\right)\)
Thay (1) vào đề bài:
\(x+\dfrac{1}{1.3}+x+\dfrac{1}{3.5}+...+x+\dfrac{1}{97.99}=50x\)
\(\Rightarrow\left(x+x+...+x\right)+\left(\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\right)=50x\)
\(\Rightarrow49x+\left[\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)\right]=50x\)
\(\Rightarrow49x+\dfrac{16}{99}=50x\)
\(\Rightarrow x=\dfrac{16}{99}\)
Vậy \(x=\dfrac{16}{99}.\)
\(\left|x-1\right|+\left|2x-2\right|+\left|3x-3\right|=6\left(1\right)\)
Xét : \(x-1=0\Leftrightarrow x=1;x-1< 0\Leftrightarrow x< 1;x-1>0\Leftrightarrow x>1\)
\(2x-2=0\Leftrightarrow x=1;2x-2< 0\Leftrightarrow x< 1;2x-2>0\Leftrightarrow x>1\)
\(3x-3=0\Leftrightarrow x=1;3x-3< 0\Leftrightarrow x< 1;3x-3>0\Leftrightarrow x>1\)
Ta có bảng xét dấu các đa thức x-1 ; 2x-2 ; 3x-3 sau :
X | 1 |
x-1 | - 0 + |
2x-2 | - 0 + |
3x-3 | - 0 + |
Xét khoảng \(x< 1\) ta có :
(1) \(\Leftrightarrow1-x+2-2x+3-3x=6\Leftrightarrow6-6x=6\Leftrightarrow x=0\) (Giá trị này thuộc khoảng đang xét )
Xét khoảng \(x>0\) ta có :
(1) \(\Leftrightarrow x-1+2x-2+3x-3=6\Leftrightarrow6x-6=6\Leftrightarrow x=2\) ( Giá trị này thuộc khoảng đang xét )
Vậy \(x=0\) và \(x=2\) thỏa mãn
Bài 1:Nếu \(a=0\Rightarrow b^2=289\Rightarrow b=17\)(thỏa mãn)
Nếu \(a\ge1\) thì b\(\ge1\)nên b có dạng \(5k,5k+1,5k+2,5k+3,5k+4\)
Xét b=5k thì \(b^2=25k^2⋮5\)
Xét b=5k+1 thì \(b^2=\left(5k+1\right)^2=25k^2+10k+1\) chia 5 dư 1
Xét b=5k+2 thì \(b^2=\left(5k+2\right)^2=25k^2+20k+4\) chia 5 dư 4
Xét b=5k+3 thì \(b^2=\left(5k+3\right)^2=25k^2+30k+9\) chia 5 dư 4
Xét b=5k+4 thì \(b^2=\left(5k+4\right)^2=25k^2+40k+16\) chia 5 dư 1
Vậy với mọi \(b\ge1\) thì \(b^2\) chia 5 có số dư là 0,1,4
Mặt khác:\(a\ge1\Rightarrow10^a⋮5\)\(\Rightarrow10^a+288\) chia 5 dư 3 mà \(b^2\) chia 5 chỉ dư 0,1,4 (vô lý)
Vậy a=0,b=17 thỏa mãn
Bài 2:Vì \(\hept{\begin{cases}\left|x-3y+1\right|\ge0\\-\left(2y-0,5\right)^2\le0\end{cases}}\) mà \(\left|x-3y+1\right|=-\left(2y-0,5\right)^2\)
\(\Rightarrow\hept{\begin{cases}\left|x-3y+1\right|=0\\-\left(2y-0,5\right)^2=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x-3y+1=0\\2y=0,5\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x+1=3y\\y=\frac{0,5}{2}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+1=3y\\y=\frac{1}{4}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x+1=\frac{3}{4}\\y=\frac{1}{4}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-\frac{1}{4}\\y=\frac{1}{4}\end{cases}}\)
Bài 2 :
Ta có :
\(\left|x-3y+1\right|\ge0\)
\(-\left(2y-0,5\right)^2< 0\)
Mà \(\left|x-3y+1\right|=-\left(2y-0,5\right)^2\)
Vậy không có giá trị nào của x và y thoã mãn đề bài
Chúc bạn học tốt ~
TA CÓ: \(\frac{x}{2009}=\frac{y}{2010}=\frac{z}{2011}=k\)
\(\Rightarrow\frac{x}{2009}=k\Rightarrow x=2009k\)
\(\frac{y}{2010}=k\Rightarrow y=2010k\)
\(\frac{z}{2011}=k\Rightarrow z=2011k\)
thay vào \(\left(x-z\right)^3=\left(2009k-2011k\right)^3=\left(k.\left(2009-2011\right)\right)^3=\left(k.\left(-2\right)\right)^3=k^3\left(-2\right)^3=k^3.\left(-8\right)\)
\(8\left(x-y\right)^2\left(y-z\right)=8\left(2009k-2010k\right)^2\left(2010k-2011k\right)=8\left(-k\right)^2\left(-k\right)=\left(-8\right)k^3\)
\(\Rightarrow\left(x-z\right)^3=8\left(x-y\right)^2\left(y-z\right)\left(=k\left(-8\right)\right)\) ( đ p c m)
CHÚC BN HỌC TỐT!!!