Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Truy cập link để nhận thẻ cào 50k free :
http://123link.vip/7K2YSHxh
Nhanh không cả hết !
Ta có: \(x-y=x^2+xy+y^2\Rightarrow x^2+\left(y-1\right)x+\left(y^2+y\right)=0\)
Coi phương trình trên là phương trình bậc hai theo ẩn x thì \(\Delta=\left(y-1\right)^2-4\left(y^2+y\right)=-3y^2-6y+1\)
Để phương trình có nghiệm thì \(\Delta\ge0\)hay \(-3y^2-6y+1\ge0\Rightarrow\frac{-3-2\sqrt{3}}{3}\le y\le\frac{-3+2\sqrt{3}}{3}\)
Mà y là số nguyên không âm nên y = 0
Thay y = 0 vào phương trình, ta được: \(x=x^2\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vậy (x, y) = { (0; 0); (1; 0) }
Bài 1 :
x2 - x - 2 = x2 - 2x + x - 2
= x( x - 2 ) + ( x - 2 ) = ( x - 2 ) ( x + 1 )
Để x3 + ax + b ⋮ ( x - 2 ) ( x + 1) thì :
x3 + ax + b = ( x - 2 ) ( x + 1 ) . Q
Vì đẳng thức trên đúng với mọi x, do đó :
+) đặt x = 2 ta có :
23 + 2a + b = ( 2 - 2 ) ( 2 + 1 ) . Q
8 + 2a + b = 0
2a + b = -8
b = -8 - 2a (1)
+) đặt x = -1 ta có :
(-1)3 + (-1)a + b = ( -1 - 2 ) ( -1 + 1 ) . Q
-1 - a + b = 0
-a + b = 1 (2)
Thay (1) vào (2) ta có :
-a - 8 - 2a = 1
<=> -3a = 9
<=> a = -3
=> b = 1 + (-3) = -2
Vậy a = -3; b = -2
\(x^2+xy=x+y+3\)
\(\Leftrightarrow x^2+xy-x-y=3\)
\(\Leftrightarrow\left(x^2+xy\right)-\left(x+y\right)=3\)
\(\Leftrightarrow x\left(x+y\right)-\left(x+y\right)=3\)
\(\Leftrightarrow\left(x-1\right)\left(x+y\right)=3\)
Vì x, y là các số nguyên nên \(x-1,x+y\)là các số nguyên.
Do đó \(\left(x-1\right)\left(x+y\right)=3=1.3=3.1=\left(-1\right).\left(-3\right)=\left(-3\right).\left(-1\right)\)
Ta có bảng sau:
x-1 | -3 | -1 | 1 | 3 |
x | -2 | 0 | 2 | 4 |
x+y | -1 | -3 | 3 | 1 |
y | 1 | -3 | 1 | -3 |
Vậy phương trình có tập nghiệm: \(\left(x;y\right)=\left(-2;1\right);\left(0;-3\right);\left(2;1\right);\left(4;-3\right)\)
\(x^2+5y^2+2y-4xy-3=0.\)
\(\Rightarrow x^2-4xy+4y^2+y^2+2y-3=0\)
\(\Rightarrow\left(x-2y\right)^2+\left(y+1\right)^2-4=0\)
Vậy cặp số x,y nhỏ nhất thỏa mãn là \(\hept{\begin{cases}x-2y=0\\y+1=0\end{cases}\Rightarrow\hept{\begin{cases}x-2y=0\\y=-1\end{cases}\Rightarrow}\hept{\begin{cases}x+2=0\\y=-1\end{cases}}}\)
\(\Rightarrow x=-2;y=-1\)
\(x^2+5y^2+2y-4xy-3=0\)
=> \(\left(x^2-4xy+4y^2\right)+\left(y^2+2y+1\right)-4=0\)
=> \(\left(x-2y\right)^2+\left(y+1\right)^2-2^2=0\)
=> \(\left(x-2y\right)^2+\left(y+1-2\right)\left(y+1+2\right)=0\)
=> \(\left(x-2y\right)^2+\left(y-1\right)\left(y+3\right)=0\)
Mà \(\left(x-2y\right)^2 \ge 0 \forall x\)
=> \(\left(y-1\right)\left(y+3\right)\le0\) Mặt khác \(y-1 < y+3 \)
=> \(\hept{\begin{cases}y-1\le0\\y+3\ge0\end{cases}}\)=> \(-3\le y\le1\) mà y nhỏ nhất
=> \(y=-3\)
Thay vào biểu thức, ta có \(\left(x+6\right)^2+\left(-3-1\right)\left(-3+3\right)=0\) => \(\left(x+6\right)^2=0\) => \(x+6=0\) => \(x=-6\)
Vậy x=-6 , y=-3
Ta luôn có \(y^3>x^3\left(x;y\in Z\right)\left(1\right)\)
Xét \(\left(x+2\right)^3-y^3=x^3+6x^2+12x+8-x^3-x^2-x-1\)
\(=5x^2+11x+7=5\left(x^2+2.\frac{11}{10}x+\frac{121}{100}\right)+\frac{19}{20}\)
\(=5\left(x+\frac{11}{10}\right)^2+\frac{19}{20}>0\forall x\left(2\right)\)
Từ (1) và (2) \(\Rightarrow y^3=\left(x+1\right)^3\Leftrightarrow x^3+x^2+x+1=x^3+3x^2+3x+1\)
\(\Leftrightarrow2x^2+2x=0\Leftrightarrow2x\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)Đến Đây thay vào tìm y là xong
lai them 1 dong minh ban oi sao ko de anh shinichi luon
\(x^2+x+3=y^2\)
<=> 4 ( x2+x+3) = 4y2
<=> 4x2+4x+12=4y2
<=> 4x2+4x+1+11-4y2=0
<=> (2x+1)2-4y2= -11
<=> ( 2x +1 -2y) (2x+1+2y)=-11
Vì x,y thuộc Z nên 2x+1-2y và 2x+1+2y thuộc Z
=> 2x+1-2y thuộc Ư(11) và 2x +1+2y thuộc Ư(11)
Mà Ư(11)= { 1;-1;11;-11}
Ta có:
TH1: \(\begin{cases}2x+1-2y=1\\2x+1+2y=-11\end{cases}=>2x+1-2y+2x+1+2y=1+\left(-11\right)< =>4x+1=-10\)
< => x=\(\frac{-11}{4}\)( Không là số nguyên nên loại)
TH2: \(\hept{\begin{cases}2x+1-2y=-1\left(1\right)\\2x+1+2y=11\end{cases}=>2x+1-2y+2x+1+2y=-1+11}\)
<=> 4x+2=10 <=> x= 2 ( Là số nguyên )
Thay x=2 vào (1) ta có 2.2+1-2y=-1 <=> y= 3 ( là số nguyên )
TH3: \(\hept{\begin{cases}2x+1-2y=11\\2x+1+2y=-1\end{cases}}\)
Th4\(\hept{\begin{cases}2x+1-2y=-11\\2x+1+2y=1\end{cases}}\)
Trường hợp 3 và 4 bạn tự tính nhé!! Nếu x, y là số nguyên thì chọn , còn ko là số nguyên thì loại nhé!!
Học tốt ạ