Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)=2017=1.2017\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-y=1\\x+y=2017\end{matrix}\right.\\\left\{{}\begin{matrix}x-y=-1\\x+y=-2017\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1009\\y=1008\end{matrix}\right.\\\left\{{}\begin{matrix}x=-1009\\y=-1008\end{matrix}\right.\end{matrix}\right.\)
Có:
\(2x^2+1=y^2-yx^2\)
<=> \(x^2\left(y+2\right)=\left(y-1\right)\left(y+1\right)\)
=> \(x^2\left(y+2\right)⋮\left(y+1\right)\)mà y+1 và y+2 là hai số nguyên liên tiếp nên nguyên tố cùng nhau
=> \(x^2⋮\left(y+1\right)\)
Đặt: \(x^2=\left(y+1\right)t\)( t thuộc Z)
Ta có phương trình : \(t\left(y+2\right)=y-1\)
,+) Với y=-2 => y+2 =0 => y-1 =0 => y=1 vô lí
+) Với y khác -2
Chia ca hai vế cho y+2 ta có:
\(t=\frac{y-1}{y+2}=1-\frac{3}{y+2}\)
Tìm y để t thuộc Z
Ta có: y+2 thuộc U(3)={-3; -1; 1; 3}
+) y+2 =-3 => y=-5 => t=2 => x^2 =(y+1)t= -8 ( loại)
+) y+2 =-1 => y=-3 => t=2 => x^2 =(y+1)t= -4 ( loại)
+) y+2=1 => y=-1 => t=-2 => x^2= 0 => x=0
+) y+2 =3 => y=1 => t=0 => x^2 =0 => x=0
THử lại thấy x=0; y=1 và x=0 ;y=-1 thỏa mãn
Vậy ...
Giải thử nha , đừng làm theo mình!
Vì x ; y là các số nguyên không âm
\(\Rightarrow x\ge x-y=x^2+y^2+xy\ge2xy+xy=3xy\)
- Nếu x = 0 thì - y = y2 => y = 0
- Nếu x > 0 kết hợp với x ≥ 3xy ta được 1 ≥ 3y , từ đó y = 0 => x = x2 => x = 1
Vậy phương trình có nghiệm ( x ; y ) là ( 0 ; 0 ) và ( 1 ; 0 )
x2 + 2013xy = 2015 ( 1 )
y2 - 2015xy = 2017 ( 2 )
( 1 ) + ( 2 ) = x2 + 2013xy + y2 - 2015xy = 2015 + 2017
<=> x2 - 2xy + y2 - 4032 = 0
<=> ( x - y )2 - (\(24\sqrt{7}\))2 = 0
<=> ( x - y -\(24\sqrt{7}\)) ( x - y + \(24\sqrt{7}\)) = 0
\(\Leftrightarrow\orbr{\begin{cases}x-y=24\sqrt{7}\\x-y=-24\sqrt{7}\end{cases}}\)Vô lý vì \(x;y\in Z\)
=> Không có cặp số x ; y nào thỏa
chắc ko v