K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2015

mk chưa học đến thông cảm 

26 tháng 2 2017

pt : 

\(2x^6-2x^3y+y^2=320\Leftrightarrow x^6+\left(x^6-2x^3y+y^2\right)=320\)

\(\Leftrightarrow x^6+\left(x^3-y\right)^2=320\)

=> \(x^6\le320\Leftrightarrow-2\le x\le2\)

TH1: Nếu \(x=-2\Rightarrow x^6=64\Rightarrow\left(x^3-y\right)^2=320-64=256\Rightarrow\orbr{\begin{cases}x^3-y=-16\\x^3-y=16\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}y=x^3+16=\left(-2\right)^3+16=8\\y=x^3-16=\left(-2\right)^3-16=-24\end{cases}}\)

TH2: Nếu \(x=2\Rightarrow x^6=64\Rightarrow\left(x^3-y\right)^2=320-64=256\Rightarrow\orbr{\begin{cases}x^3-y=-16\\x^3-y=16\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}y=x^3+16=2^3+16=24\\y=x^3-16=2^3-16=-8\end{cases}}\)

TH3: Nếu \(\orbr{\begin{cases}x=-1\\x=1\end{cases}}\Rightarrow x^6=1\Rightarrow\left(x^3-y\right)^2=320-1=319\) (vô nghiệm nguyên)

TH4: Nếu \(x=0\Rightarrow x^6=0\Rightarrow\left(x^3-y\right)^2=320\)(vô nghiệm nguyên)

Vậy pt có nghiệm (x,y)=...

2 tháng 9 2015

mình biết làm nhưng dài quá bạn tra trên google là đc

25 tháng 11 2018

Ta có:

\(x^2y^2-2x\left(y+2\right)+4=0\)

\(\Leftrightarrow x^2y^2-2xy+4=4x\)

\(\Leftrightarrow\left(xy-1\right)^2+3=4x\)

\(\left(xy-1\right)^2+3>0\)

Nên 4x>0

x>0

Ta có:

\(x^2y^2-2x\left(y+2\right)+4=0\)

\(\Leftrightarrow x^2y^2+4=2x\left(y+2\right)\)

\(x^2y^2+4>0\forall x,y\)

Nên \(2x\left(y+2\right)>0\)

Mặt khác x>0

nên y+2>0

=> y>-2 (1)

Áp dụng bđt Cosi ta có:

\(x^2y^2+4\ge4xy\)

\(\Leftrightarrow x^2y^2+4=2x\left(y+2\right)\)

Nên \(2x\left(y+2\right)\ge4xy\)

\(\Rightarrow y+2\ge2y\)

\(\Leftrightarrow y\le2\) (2)

Do y \(\in Z\) và ta đã có (1), (2)

Nên \(y\in\left\{-1;0;1;2\right\}\)

Th1: y = -1

\(\Rightarrow x^2-2x\left(-1+2\right)+4=0\)

\(\Leftrightarrow x^2-2x+4=0\)

\(\Leftrightarrow\left(x-1\right)^2+3=0\left(vl\right)\)

Th2: y = 0

\(\Rightarrow x^2-2x\left(0+2\right)+4=0\)

\(\Leftrightarrow x^2-4x+4=0\)

\(\Rightarrow x=2\) (nhận)

Th3: y = 1

\(\Rightarrow x^2-2x\left(1+2\right)+4=0\)

\(\Leftrightarrow x^2-6x+4=0\)

\(\Leftrightarrow\left(x-3\right)^2=5\)

\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{5}+3\\x=-\sqrt{5}+3\end{matrix}\right.\)

Loại do x \(\in Z\)

Th4: y = 2

\(\Rightarrow x^2-2x\left(2+2\right)+4=0\)

\(\Leftrightarrow x^2-8x+4=0\)

\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{12}+3\\x=-\sqrt{12}+3\end{matrix}\right.\)

Loại do x \(\in Z\)

Vậy \(\left(x;y\right)\in\left\{2;0\right\}\)

25 tháng 11 2018

4 Th sai cả rồi

do mình thế ngu

ra y \(\in\left\{-1;0;1;2\right\}\) thì bạn thế vô tính x nhé

8 tháng 12 2017

mk hc nghu lém mk giải ko dc nhưng cho mk xin nha mấy bn yêu mấy bn nh`

8 tháng 12 2017

x=5 y=15

30 tháng 9 2019

a.

\(x^2-4xy=23\)

\(\Leftrightarrow x\left(x-4y\right)=23\)

Ta co:

\(23=1.23=23.1=\left(-1\right).\left(-23\right)=\left(-23\right).\left(-1\right)\)

TH1:

\(\left\{{}\begin{matrix}x=1\\x-4y=23\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-\frac{11}{2}\end{matrix}\right.\)(loai)

TH2:

\(\left\{{}\begin{matrix}x=23\\x-4y=1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=23\\y=\frac{11}{2}\end{matrix}\right.\)(loai)

TH3:

\(\left\{{}\begin{matrix}x=-1\\x-4y=-23\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=\frac{11}{2}\end{matrix}\right.\)(loai)

TH4:

\(\left\{{}\begin{matrix}x=-23\\x-4y=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-23\\y=-\frac{11}{2}\end{matrix}\right.\)(loai)

Vay khong co ngiem nguyen nao thoa man phuong trinh