Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Truy cập link để nhận thẻ cào 50k free :
http://123link.vip/7K2YSHxh
Nhanh không cả hết !
Ta có: \(x-y=x^2+xy+y^2\Rightarrow x^2+\left(y-1\right)x+\left(y^2+y\right)=0\)
Coi phương trình trên là phương trình bậc hai theo ẩn x thì \(\Delta=\left(y-1\right)^2-4\left(y^2+y\right)=-3y^2-6y+1\)
Để phương trình có nghiệm thì \(\Delta\ge0\)hay \(-3y^2-6y+1\ge0\Rightarrow\frac{-3-2\sqrt{3}}{3}\le y\le\frac{-3+2\sqrt{3}}{3}\)
Mà y là số nguyên không âm nên y = 0
Thay y = 0 vào phương trình, ta được: \(x=x^2\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vậy (x, y) = { (0; 0); (1; 0) }
Tìm cặp số nguyên (x;y) thỏa mãn x+y=xy
\(x+y=xy\)
\(\Leftrightarrow x+y-xy=0\)
\(\Leftrightarrow x-xy+y-1=-1\)
\(\Leftrightarrow x\left(1-y\right)-\left(1-y\right)=-1\)
\(\Leftrightarrow\left(1-y\right)\left(x-1\right)=-1\)
Từ trên ta xét 2 TH : 1 là 1 - y = 1 và x - 1 = -1 | 2 là 1 - y = -1 và x - 1 = 1
TH1:\(x-1=-1\)
\(\Rightarrow x=0\)
\(1-y=1\)
\(\Rightarrow y=0\)
TH2: \(x-1=1\)
\(\Rightarrow x=2\)
\(1-y=1\)
\(\Rightarrow y=2\)
=> 2 cặp số nguyên (x;y) thỏa mãn x+y=xy là (0;0) và (2;2)
Giải thử nha , đừng làm theo mình!
Vì x ; y là các số nguyên không âm
\(\Rightarrow x\ge x-y=x^2+y^2+xy\ge2xy+xy=3xy\)
Vậy phương trình có nghiệm ( x ; y ) là ( 0 ; 0 ) và ( 1 ; 0 )