K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2017

bài này gần như là của lớp 6

28 tháng 11 2017

đúng nhưng đây đã nâng cao hơn và cx là dạng bồi giỏi của lớp 7

tui nhớ hình như là vậy

3 tháng 3 2017

5 nha bạn

15 tháng 3 2018

ta có: \(S=\frac{2x+2y-3}{x+y}=\frac{2.\left(x+y\right)-3}{x+y}=\frac{2.\left(x+y\right)}{x+y}-\frac{1}{x+y}=2-\frac{1}{x+y}\)

để \(S\in Z\Rightarrow\frac{1}{x+y}\in z\)

\(\Rightarrow1⋮x+y\Rightarrow x+y\inƯ_{\left(1\right)}=\left(1;-1\right)\)

nếu x+y = 1

mà x;y phải là số nguyên dương

\(\Rightarrow x;y\in\varnothing\) ( vì không có 2 số nguyên dương nào cộng lại bằng 1) ( 0 không phải là số nguyên dương)

nếu x+ y= -1

mà x; y là số nguyên dương

\(\Rightarrow x;y\in\varnothing\)( vì không có 2 số nguyên dương nào cộng lại với nhau mà bằng số âm)

KL : \(x;y\in\varnothing\)

CHÚC BN HỌC TỐT!!!!

15 tháng 3 2018

cảm ơn bạn CÔNG CHÚA ÔRI nha  ^_^

30 tháng 11 2018

a)  x=2 :y thuộc {9: -9 }

b) đặt k nha bạn kq = 4/ 5

k nha

30 tháng 11 2018

1, \(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)

Vì \(\hept{\begin{cases}\left|2x-27\right|^{2011}\ge0\forall x\\\left(3y+10\right)^{2012}\ge0\forall x\end{cases}\Rightarrow VT\ge0\forall x}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}}}\)
Vậy ...................

Câu 1: Giá trị x=... thì biểu thức \(D=\frac{-1}{5}\left(\frac{1}{4}-2x\right)^2-\left|8x-1\right|+2016\) đạt giá trị lớn nhất. Câu 2: Tập hợp giá trị x nguyên thỏa mãn \(\left|2x-7\right|+\left|2x+1\right|\le8\)Câu 3: Giá trị lớn nhất của \(B=3-\sqrt{x^2-25}\)Câu 4: Số phần tử của tập hợp \(\left\{x\in Z\left|x-2\right|\le9\right\}\)Câu 5: Giá trị nhỏ nhất của biểu thức D= \(\frac{-3}{x^2+1}-2\)Câu 6: Có bao nhiêu...
Đọc tiếp

Câu 1: Giá trị x=... thì biểu thức \(D=\frac{-1}{5}\left(\frac{1}{4}-2x\right)^2-\left|8x-1\right|+2016\) đạt giá trị lớn nhất. 

Câu 2: Tập hợp giá trị x nguyên thỏa mãn \(\left|2x-7\right|+\left|2x+1\right|\le8\)

Câu 3: Giá trị lớn nhất của \(B=3-\sqrt{x^2-25}\)

Câu 4: Số phần tử của tập hợp \(\left\{x\in Z\left|x-2\right|\le9\right\}\)

Câu 5: Giá trị nhỏ nhất của biểu thức D= \(\frac{-3}{x^2+1}-2\)

Câu 6: Có bao nhiêu cặp số (x;y) thỏa mãn đẳng thức xy=x+y

Câu 7: Gọi A là tập hợp các số nguyên dương sao cho giá trị của biểu thức: \(\frac{2\sqrt{x}+3}{\sqrt{x}-1}\) là nguyên. Số phần tử của tập hợp A là...

Câu 8: Cho x;y là các số thỏa mãn \(\left(x+6\right)^2+\left|y-7\right|=0\) khi đó x+y=...

Câu 9: Phân số dương tối giản có mẫu khác 1, biết rằng tổng của tử và mẫu số bằng 18, nó có thể viết dưới dạng số thập phân hữu hạn. Có... phân số thỏa mãn 

 

0
1 tháng 4 2017

a)x+y+xy=2

=> x+xy+y=2

=>x(y+1)+y=2

=>x(y+1)+y+1=3

=>x(y+1)+(y+1)=3

=>(y+1)(x+1)=3

Đến đây thì dễ rồi, bạn tự tìm nốt nha

b) \(\frac{27-2x}{12-x}=\frac{24-2x+3}{12-x}=\frac{2.\left(12-x\right)+3}{12-x}=2+\frac{3}{12-x}\)

Để Q lớn nhất thì \(\frac{3}{12-x}\) lớn nhất

Với x>12 thì \(\frac{3}{12-x}< 0\)

Với x<12 thì \(\frac{3}{12-x}.>0\)

Phân số \(\frac{3}{12-x}\) với x<12 có tử và mẫu đều dương, tử ko đổi nên mẫu phải nhỏ nhất

=>12-x=1

=>x=11

1 tháng 4 2017

a) (x,y) =(2,0)

b) max Q= 5 khi x=11

15 tháng 9 2016

Vì x,y,z là các số dương nên : \(\frac{x}{x+y}< \frac{x+z}{x+y+z}\) ; \(\frac{y}{y+z}< \frac{y+x}{x+y+z}\) ; \(\frac{z}{z+x}< \frac{z+y}{x+y+z}\)

\(\Rightarrow A< \frac{2\left(x+y+z\right)}{x+y+z}=2\) (1)

Mặt khác ta lại có : \(x+y< x+y+z\Rightarrow\)\(\frac{x}{x+y}>\frac{x}{x+y+z}\)

Tương tự : \(\frac{y}{y+z}>\frac{y}{x+y+z};\frac{z}{z+x}>\frac{z}{x+y+z}\)

\(\Rightarrow A>\frac{x+y+z}{x+y+z}=1\) (2)

Từ (1) và (2) suy ra : \(1< A< 2\) => A không có giá trị nguyên

 

15 tháng 9 2016

\(A=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}\)

\(A>\frac{x+y+z}{x+y+z}\)

\(A>1\left(1\right)\)

Áp dụng \(\frac{a}{b}< 1\Leftrightarrow\frac{a}{b}< \frac{a+m}{b+m}\) (a,b,m \(\in\) N*) ta có:

\(A=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}< \frac{x+z}{x+y+z}+\frac{x+y}{x+y+z}+\frac{z+y}{x+y+z}\)

\(A< \frac{2.\left(x+y+z\right)}{x+y+z}\)

\(A< 2\left(2\right)\)

Từ (1) và (2) => 1 < A < 2

=> A không là số nguyên (đpcm)