Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x-29}+2\sqrt{y-6}+3\sqrt{z-2011}+1016=\dfrac{1}{2}\left(x+y+z\right)\)\(\Leftrightarrow2\sqrt{x-29}+4\sqrt{y-6}+6\sqrt{z-2011}+2032=x+y+z\)\(\Leftrightarrow-2\sqrt{x-29}-4\sqrt{y-6}-6\sqrt{z-2011}-2032=-x-y-z\)\(\Leftrightarrow(x-29-2\sqrt{x-29}+1)+(y-6-2\cdot2\sqrt{y-6}+2^2)+(z-2011-2\cdot3\sqrt{z-2011}+3^2)=0\)\(\Leftrightarrow\left(\sqrt{x-29}-1\right)^2+\left(\sqrt{y-6}-2\right)^2+\left(\sqrt{z-2011}-3\right)^2=0\)\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-29}-1=0\\\sqrt{y-6}-2=0\\\sqrt{z-2011}-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-29}=1\\\sqrt{y-6}=2\\\sqrt{z-2011}=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-29=1\\y-6=4\\z-2011=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=30\\y=10\\z=2020\end{matrix}\right.\)
Vậy : ......................
Điều kiện xác định : \(x\ge0\),\(y\ge1\),\(z\ge2\)
\(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\)
\(\Leftrightarrow2\sqrt{x}+2\sqrt{y-1}+2\sqrt{z-2}=x+y+z\)
\(\Leftrightarrow\left(x-2\sqrt{x}+1\right)+\left(y-1-2\sqrt{y-1}+1\right)+\left(z-2-2\sqrt{z-2}+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-1\right)^2+\left(\sqrt{z-2}-1\right)^2=0\)
Mà \(\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-1\right)^2+\left(\sqrt{z-2}-1\right)^2\ge0\)
Đẳng thức xảy ra khi \(\left(\sqrt{x}-1\right)^2=\left(\sqrt{y-1}-1\right)^2=\left(\sqrt{z-2}-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\)
\(\Leftrightarrow2\sqrt{x}+2\sqrt{y-1}+2\sqrt{z-2}=x+y+z\)
\(\Leftrightarrow\left(x-2\sqrt{x}+1\right)+\left(y-1-2\sqrt{y-1}+1\right)+\left(z-2-2\sqrt{z-2}+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-1\right)^2+\left(\sqrt{z-2}-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x}-1=0\\\sqrt{y-1}-1=0\Leftrightarrow\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\\\sqrt{z-2}-1=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x}-1=0\\\sqrt{y-1}-1=0\Leftrightarrow\\\sqrt{z-2}-1=0\end{cases}\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}}\)
vậy \(S=x+y=1+2=3\)
\(x+y+z=2\sqrt{x-29}+4\sqrt{y-6}+6\sqrt{z-2011}+2032\)
<=>\(\left(x-29\right)-2\sqrt{x-29\cdot}+1+\left(y-6\right)-4\sqrt{y-6}+4+\left(z-2011\right)-6\sqrt{z-2011}+9=0\)
<=>\(\left(\sqrt{x-29}-1\right)^2+\left(\sqrt{y-6}-2\right)^2+\left(\sqrt{z-2011}-3\right)^2=0\)
cho 3 cái =0 là ra
nhân 2 lên rồi rút về hằng đẳng thức là xong bạn ak cần mk giải ra ko
Vì xyz=1\(\Rightarrow x^2\left(y+z\right)\ge2x^2\sqrt{yz}=2x\sqrt{x}\)
Tương tự \(y^2\left(z+x\right)\ge2y\sqrt{y};z^2=\left(x+y\right)\ge2z\sqrt{z}\)
\(\Rightarrow P\ge\frac{2x\sqrt{x}}{y\sqrt{y}+2z\sqrt{z}}+\frac{2y\sqrt{y}}{z\sqrt{z}+2x\sqrt{x}}+\frac{2z\sqrt{z}}{x\sqrt{x}+2y\sqrt{y}}\)
Đặt \(x\sqrt{x}+2y\sqrt{y}=a;y\sqrt{y}+2z\sqrt{z}=b;z\sqrt{z}+2x\sqrt{x}=c\)
\(\Rightarrow x\sqrt{x}=\frac{4c+a-2b}{9};y\sqrt{y}=\frac{4a+b-2c}{9};z\sqrt{z}=\frac{4b+c-2a}{9}\)
\(\Rightarrow P\ge\frac{2}{9}\left(\frac{4c+a-2b}{b}+\frac{4a+b-2c}{a}+\frac{4b+c-2a}{b}\right)\)
\(=\frac{2}{9}\text{ }\left[4\left(\frac{c}{b}+\frac{a}{c}+\frac{b}{a}\right)+\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-6\right]\ge\frac{2}{9}\left(4.3+2-6\right)=2\)
Min P =2 khi và chỉ khi a=b=c khi va chỉ khi x=y=z=1
ĐKXĐ: ....
\(\Leftrightarrow2\sqrt{x-29}+4\sqrt{y-6}+6\sqrt{z-2011}+2032=x+y+z\)
\(\Leftrightarrow x-29-2\sqrt{x-29}+1+y-6-4\sqrt{y-6}+4+z-2011-6\sqrt{z-2011}+9=0\)
\(\Leftrightarrow\left(\sqrt{x-29}-1\right)^2+\left(\sqrt{y-6}-2\right)^2+\left(\sqrt{z-2011}-3\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-29}-1=0\\\sqrt{y-6}-2=0\\\sqrt{z-2011}-3=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=30\\y=10\\z=2020\end{matrix}\right.\)