K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2019

Không mất tính tổng quát giả sử : 0 < x\(\le\)y\(\le\)z.

Ta có: xyz = 2(x + y + z ) \(\le\)2 ( z + z + z ) = 6 z

Và xy = 2 ( x + y + z ) : z 

=> xyz \(\le\)6z

=> xy \(\le\)6

vì x, y là số nguyên dương

=> xy \(\in\){1; 2; 3; 4; 5; 6} với x\(\le\)y

+) TH1 : xy = 1 => x = y = 1

=> z = 2 ( 2 + z ) => z = 4 + 2z => z = -4 loại

+) TH2: xy = 2 => x = 1; y = 2 

=> 2 z = 2 ( 1 + 2 + z )  => 0z = 6 loại

+) TH3: xy = 3 => x = 1; y = 3

=> 3z = 2 ( 1 + 3 + z ) => z = 8  ( thỏa mãn )

+) Th4: xy = 4 => x =2 ; y = 2 hoặc x = 1; y =4

Với x =2; y = 2 => 4z =2 (  4+ z)  => z = 4 ( thỏa mãn )

Với x = 1; y = 4; => 4z = 2 ( 5 + z ) => z = 5 ( thỏa mãn)

Em làm tiếp nhé!

15 tháng 7 2017

từ \(x+y+z=xyz\Rightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\)

\(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\rightarrow\left(a,b,c\right)\)\(\Rightarrow ab+bc+ca=1\)

Thay vào \(\sqrt{x^2+1}\) r` phân tích nhân tử áp dụng C-S là ra :3

27 tháng 10 2020

Nếu x; y; z là các số nguyên dương mà x y z = 1 => x = y = z = 1

=> bất đẳng thức luôn xảy ra dấu bằng

Sửa đề 1 chút cho z; y; x là các số dương

Ta có: \(\frac{x^2}{y+1}+\frac{y+1}{4}\ge2\sqrt{\frac{x^2}{y+1}.\frac{y+1}{4}}=x\)

=> \(\frac{x^2}{y+1}\ge x-\frac{y+1}{4}\)

Tương tự: 

\(\frac{x^2}{y+1}+\frac{y^2}{z+1}+\frac{z^2}{z+1}\ge x+y+z-\frac{y+1}{4}-\frac{z+1}{4}-\frac{x+1}{4}\)

\(=\frac{3}{4}\left(x+y+z\right)-\frac{3}{4}\ge\frac{3}{4}.3\sqrt[3]{xyz}-\frac{3}{4}=\frac{3}{2}\)

Dấu "=" xảy ra <=> x = y = z = 1