K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2019

Gọi 7 số nguyên liên tiếp là: n; n+1; n+2; n+3; n+4; n+5; n+6. Theo đề bài

\(n^2+\left(n+1\right)^2+\left(n+2\right)^2+\left(n+3\right)^2=\left(n+4\right)^2+\left(n+5\right)^2+\left(n+6\right)^2.\)

Khai triển, rút gọn rồi giải phương trình bậc 2 để tìm n phù hợp

ghê bài  này mà lớp 9 cơ mk nghĩ lớp 6 thôi

18 tháng 4 2017

Lớp 6 không làm nổi --> nâng cấp lớp 9 làm nổi không

30 tháng 6 2016

Ta có:a, |2x-1|= |2x+3|

<=> 2x - 1 = -(2x + 3) 

=> 2x + 2x = 3 + 1

=> 4x = 4

=> x = 1

29 tháng 7 2020

dễ mà nhưng em đang ốm ko giải đc mn hộ em với đủ 50   thì em giải cho nhé

23 tháng 8 2017

Gọi số đó là (ab) 
(ab)^2=(a+b)^3 
Từ đó suy ra (ab) phải là lập phương của 1 số, a+b là bình phương của 1 số 
(ab) = 27 hoặc 64 
chỉ có 27 thỏa mãn 
vậy (ab)=27

23 tháng 8 2017

Gọi số đó là (ab) 
(ab)^2=(a+b)^3 
Từ đó suy ra (ab) phải là lập phương của 1 số, a+b là bình phương của 1 số 
(ab) = 27 hoặc 64 
chỉ có 27 thỏa mãn 
vậy (ab)=27

NV
20 tháng 3 2022

Do p là SNT nên \(p^4\) chỉ có các ước nguyên dương là \(1;p;p^2;p^3;p^4\)

\(\Rightarrow1+p+p^2+p^3+p^4=k^2\) với \(k\in N\)

\(\Rightarrow\left(2k\right)^2=4p^4+4p^3+4p^2+4p+4=\left(2p^2+p\right)^2+\left(3p^2+4p+4\right)>\left(2p^2+p\right)^2\)

Đồng thời: \(4p^4+4p^3+4p^2+4p+4=\left(2p^2+p+2\right)^2-5p^2< \left(2p^2+p+2\right)^2\)

\(\Rightarrow\left(2p^2+p\right)^2< \left(2k\right)^2< \left(2p^2+p+2\right)^2\)

\(\Rightarrow\left(2k\right)^2=\left(2p^2+p+1\right)^2\)

\(\Rightarrow4p^4+4p^3+4p^2+4p+4=\left(2p^2+p+1\right)^2\)

\(\Rightarrow p^2-2p-3=0\Rightarrow\left[{}\begin{matrix}p=-1\left(ktm\right)\\p=3\left(tm\right)\end{matrix}\right.\)

20 tháng 3 2022

Em cảm ơn ạ

DD
12 tháng 9 2021

Vì \(p\)là số nguyên tổ nên tổng các ước nguyên dương của \(p^4\)là \(1+p+p^2+p^3+p^4\).

Đặt \(p^4+p^3+p^2+p+1=n^2\)

\(\Leftrightarrow4p^4+4p^3+4p^2+4p+1=4n^2\)

Ta có: 

\(4p^4+4p^3+4p^2+4p+4>4p^4+4p^3+p^2=\left(2p^2+p\right)^2\)

\(4p^4+4p^3+4p^2+4p+4< 4p^4+4p^3+9p^2+4p+4=\left(2p^2+p+2\right)^2\)

Suy ra \(\left(2p^2+p\right)^2< 4n^2< \left(2p^2+p+2\right)^2\)

\(\Rightarrow\left(2n\right)^2=\left(2p^2+p+1\right)^2=4p^4+4p^3+5p^2+2p+1\)

\(\Rightarrow p^2-2p-3=0\)

\(\Leftrightarrow\left(p+1\right)\left(p-3\right)=0\)

\(\Rightarrow p=3\)thỏa mãn. 

Vậy \(p=3\).