K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2017

x=10 ; y=1; z=-1

15 tháng 1 2017

x=9; y=1; z=20, nãy nhầm

vui

24 tháng 6 2019

Áp dụng hđt: \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)Ta có: \(x^3+y^3+3xyz=z^3\Leftrightarrow x^3+y^3+3xyz-z^3=0\Leftrightarrow\left(x+y-z\right)\left(x^2+y^2+z^2-xy+xz+yz\right)=0\)

Th1: \(x+y-z=0\Leftrightarrow x+y=z\Rightarrow z^3=\left(2x+2y\right)^2=4z^2\Leftrightarrow z=4\)(do z là số nguyen dương)

\(\Rightarrow x+y=4\)\(\Rightarrow\left(x,y\right)\in\left\{\left(1,3\right)\left(2,2\right)\left(3,1\right)\right\}\)

\(TH2:x^2+y^2+z^2-xy+xz+yz=0\Leftrightarrow\frac{\left(x-y\right)^2+\left(x+z\right)^2+\left(y+z\right)^2}{2}=0\)(loại vì x,y,z nguyên dương nên VT>0 )

Vậy...

1 tháng 5 2020

Ta có:

\(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\Leftrightarrow\left(a+b\right)c=ab\Leftrightarrow ab-bc-ab=0\)

Hay \(ab-bc-ab+c^2=c^2\Leftrightarrow\left(b-c\right)\left(a-c\right)=c^2\)

Nếu \(\left(b-c;a-c\right)=d\ne1\Rightarrow c^2=d^2\left(loai\right)\)

Vậy \(\left(b-c;a-c\right)=1\Rightarrow c-b;c-a\) là 2 số chính phương

Đặt \(b-c=n^2;a-c=m^2\)

\(\Rightarrow a+b=b-c+a-c+2c=m^2+n^2+2mn=\left(m+n\right)^2\) là số chính phương

26 tháng 7 2024

cho mình hỏi tại sao ở TH1: c^2=d^2 lại loại vậy ạ

 

13 tháng 7 2016

Đặt \(a=\sqrt{2x-3}\) ; \(b=\sqrt{y-2}\) ; \(c=\sqrt{3z-1}\) (\(a,b,c>0\))

Ta có : \(\frac{1}{a}+\frac{4}{b}+\frac{16}{c}+a+b+c=14\)

\(\Leftrightarrow\left(\sqrt{2x-3}+\frac{1}{\sqrt{2x-3}}-2\right)+\left(\sqrt{y-2}+\frac{4}{\sqrt{y-2}}-4\right)+\left(\sqrt{3z-1}+\frac{16}{\sqrt{3z-1}}-8\right)=0\)

\(\Leftrightarrow\left[\frac{\left(2x-3\right)-2\sqrt{2x-3}+1}{\sqrt{2x-3}}\right]+\left[\frac{\left(y-2\right)-4\sqrt{y-2}+4}{\sqrt{y-2}}\right]+\left[\frac{\left(3z-1\right)-8\sqrt{3z-1}+16}{\sqrt{3z-1}}\right]=0\)

\(\Leftrightarrow\frac{\left(\sqrt{2x-3}-1\right)^2}{\sqrt{2x-3}}+\frac{\left(\sqrt{y-2}-2\right)^2}{\sqrt{y-2}}+\frac{\left(\sqrt{3z-1}-4\right)^2}{\sqrt{3z-1}}=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{2x-3}-1\right)^2=0\\\left(\sqrt{y-2}-2\right)^2=0\\\left(\sqrt{3z-1}-4\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=6\\z=\frac{17}{3}\end{cases}}}\)(TMĐK)

Vậy : \(\left(x;y;z\right)=\left(2;6;\frac{17}{3}\right)\)

13 tháng 7 2016

Phần đặt ẩn a,b,c bạn bỏ đi nhé ^^

3 tháng 4 2019

Có x2015 + y2015 + z2015 = 3

Điều này xảy ra khi và chỉ khi x = y = z = 1

=> max của x2 + y2 + z2  = 3

Vậy...

25 tháng 6 2018
x3+y3+z3 = 3xyz + 2017 \(\Leftrightarrow x^3+y^3+z^3-3xyz=2017\) \(\Leftrightarrow\dfrac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2\right]=2017\) \(\Leftrightarrow\left(x+y+z\right)\left[\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2\right]=4034\) 4034 có 4 ước nguyên dương là 1; 2; 2017; 4034. Mà x; y; z là ba số nguyên dương \(\Rightarrow\)x +y+z \(\ge\)3 \(\Rightarrow\)x+y+z = 2017; 4034. *Nếu x+y+z = 4034. \(\Rightarrow\) (x-y)2 + (x-z)2 + (y-z)2 = 1 \(\Rightarrow\left\{{}\begin{matrix}x-y=0\\x-z=0\\\left|y-z\right|=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=z\\\left|y-z\right|=1\end{matrix}\right.\) (loại) *Nếu x+y+z = 2017 \(\Rightarrow\)(x-y)2 + (x-z)2 + (y-z)2 = 2 + TH1: \(\Rightarrow\left\{{}\begin{matrix}x-y=0\\x-z=0\\\left|y-z\right|=\sqrt{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=z\\\left|y-z\right|=\sqrt{2}\end{matrix}\right.\) (loại) +TH2: \(\Rightarrow\left\{{}\begin{matrix}\left|x-y\right|=1\\\left|x-z\right|=1\\y-z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=1\\x-z=-1\\y=z\end{matrix}\right.\)(không mất tính tổng quát) \(\Rightarrow\left\{{}\begin{matrix}x+y+z=2017\\x-y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2017-2y\\x=y-1\end{matrix}\right.\) \(\Rightarrow2017-2y=y-1\) \(\Leftrightarrow3y=2016\Leftrightarrow y=672\) \(\Rightarrow x=673;z=672\) Vậy có 1 bộ ba (x;y;z) nguyên dương cần tìm là (672;672;673) và các hoán vị của chúng.