Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
a)\(\left(\dfrac{1}{2}\cdot\left(-2\right)\cdot\dfrac{-1}{3}\right)\cdot\left(x^2\cdot x^2\cdot x^2\right)\cdot\left(y^2\cdot y^3\right)\cdot z\)
\(\dfrac{1}{3}x^6y^5z\)
Deg=12
Thu gọn rồi tính giá trị của đa thức P tại x = 0,5 và y = 1.
Ta có: P = 1313 x2 y + xy2 – xy + 1212 xy2 – 5xy – 1313 x2y
P = 1313 x2 y – 1313 x2y + 1212 xy2 + xy2 – xy – 5xy = 3232 xy2 – 6xy
Thay x = 0,5 và y = 1 ta được
P = 3232 . 0,5 . 12 – 6. 0,5 . 1 = 3434 - 3 = −94−94.
Vậy P = −94−94 tại x = 0,5 và y = 1.
E + F = (5xy - \(\dfrac{2}{3}\)x\(^2\)y + xyz\(^2\) - 1) + (2x\(^2\)y - xyz\(^2\) - \(\dfrac{2}{5}\)xy + x + \(\dfrac{1}{2}\))
= 5xy - \(\dfrac{2}{3}\)x\(^2\)y + xyz\(^2\) - 1 + 2x\(^2\)y -xyz\(^2\) - \(\dfrac{2}{5}\)xy + x + \(\dfrac{1}{2}\)
= (5xy - \(\dfrac{2}{5}\)xy) + (\(\dfrac{-2}{3}\)x\(^2\)y + 2x\(^2\)y) + (xyz\(^2\) - xyz\(^2\)) + (-1 + \(\dfrac{1}{2}\)) + x
= \(\dfrac{23}{5}\)xy + \(\dfrac{4}{3}\) x\(^2\)y - \(\dfrac{1}{2}\) + x
E - F = (5xy - \(\dfrac{2}{3}\)x\(^2\)y + xyz\(^2\) - 1) - (2x\(^2\)y - xyz\(^2\) - \(\dfrac{2}{5}\)xy + x + \(\dfrac{1}{2}\))
= 5xy - \(\dfrac{2}{3}\)x\(^2\)y + xyz\(^2\) - 1 - 2x\(^2\)y + xyz\(^2\) + \(\dfrac{2}{5}\)xy - x - \(\dfrac{1}{2}\)
= (5xy + \(\dfrac{2}{5}\)xy) + (\(\dfrac{-2}{3}\)x\(^2\)y - 2x\(^2\)y) + (xyz\(^2\) + xyz\(^2\))+ (-1 - \(\dfrac{1}{2}\)) - x
= \(\dfrac{27}{5}\)xy - \(\dfrac{8}{3}\)x\(^2\)y + 2xyz\(^2\) - \(\dfrac{3}{2}\) - x
Vậy E - F = \(\dfrac{27}{5}\)xy - \(\dfrac{8}{3}\)x\(^2\)y + 2xyz\(^2\) - \(\dfrac{3}{2}\) - x
\(B=\dfrac{3}{4}xy^2-\dfrac{1}{3}x^2y-\dfrac{5}{6}xy^2+2x^2y=-\dfrac{1}{12}xy^2+\dfrac{5}{3}x^2y\)
Bậc:3
Thay x=-1, y=1 vào B ta có:
\(B=-\dfrac{1}{12}xy^2+\dfrac{5}{3}x^2y=-\dfrac{1}{12}.\left(-1\right).1^2+\dfrac{5}{3}.\left(-1\right)^2.1=\dfrac{1}{12}+\dfrac{5}{3}=\dfrac{7}{4}\)
\(A=5xy^2+xy-xy^2-\frac{1}{3}x^2y+2xy+x^2y+xy+6\)
\(A=\left(5xy^2-xy^2\right)+\left(xy+2xy+xy\right)+\left(-\frac{1}{3}x^2y+x^2y\right)+6\)
\(A=4xy^2+4xy+\frac{2}{3}x^2y+6\)
b) để A+B=0 => B là số đối của A
\(\Rightarrow B=-4xy^2-4xy-\frac{2}{3}x^2y-6\)
c) Ta có \(A+C=-2xy+1\Leftrightarrow4xy^2+4xy+\frac{2}{3}x^2y+6+C=-2xy+1\)
\(\Leftrightarrow C=-2xy+1-4xy^2-4xy-\frac{2}{3}x^2y-6\)
\(\Leftrightarrow C=\left(-2xy-4xy\right)+\left(1-6\right)-4xy^2-\frac{2}{3}x^2y\)
\(\Leftrightarrow C=-6xy-5-4xy^2-\frac{2}{3}x^2y\)
a, \(A=-4x^5y^3+x^4y^3-3x^2y^3z^2+4x^5y^3-x^4y^3+x^2y^3z^2-2y^4\)
\(=2x^2y^3z^2-2y^4\)
Bậc của đa thức A là 7
Vậy...
b, Ta có: \(B-2x^2y^3z^2+\dfrac{2}{3}y^4-\dfrac{1}{5}x^4y^3=A\)
\(\Rightarrow B-2x^2y^3z^2+\dfrac{2}{3}y^4-\dfrac{1}{5}x^4y^3=2x^2y^3z^2-2y^4\)
\(\Rightarrow B=2x^2y^3z^2-2y^4+2x^2y^3z^2-\dfrac{2}{3}y^4+\dfrac{1}{5}x^4y^3\)
\(=4x^2y^3z^2-\dfrac{8}{3}y^4+\dfrac{1}{5}x^4y^3\)
Vậy...
\(a.M+(5x^2-2xy)=6x^2+9xy-y^2
\)
\(M=(6x^2+9xy-y^2)-(5x^2-2xy)\)
\(M=6x^2+9xy-y^2-5x^2+2xy\)
\(M=(6x^2-5x^2)+(9xy+2xy)-y^2\)
\(M=x^2+11xy-y^2\)
Vậy \(M=x^2+11xy-y^2\)
\(b.M+(3x^2y-2xy^3)=2x^2y-4xy^3\)
\(M=(2x^2y-4xy^3)-(3x^2-2xy^3)\)
\(M=
\) \(2x^2-4xy^3-3x^2+2xy^3\)
\(M=(2x^2-3x^2)+(-4xy^3+2xy^3)\)
\(M=-x^2-2xy^3\)
Vậy \(M=-x^2-2xy^3\)
a) M + (5x\(^2\) - 2xy) = 6x\(^2\) + 9xy - y\(^2\)
=> M = (6x\(^2\) + 9xy - y\(^2\)) - (5x\(^2\) - 2xy)
M = 6x\(^2\) + 9xy - y\(^2\) - 5x\(^2\) + 2xy
M = (6x\(^2\) - 5x\(^2\)) + (9xy + 2xy) - y\(^2\)
M = 1x\(^2\) + 11xy - y\(^2\)